The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] operational amplifiers(3hit)

1-3hit
  • Synthesis of a Complex Coefficient Filter by Passive Elements Including Ideal Transformers and Its Simulation Using Operational Amplifiers

    Kazuhiro SHOUNO  Yukio ISHIBASHI  

     
    PAPER

      Vol:
    E83-A No:6
      Page(s):
    949-955

    In this paper, a realization of an imaginary resistor using an ideal transformer is proposed. In the same fashion as the conventional method, a signal path is divided into a real signal path and an imaginary path. We name circuits which constitute a real signal path and an imaginary signal path, a real circuit and an imaginary circuit, respectively. An imaginary resistor is converted into an ideal transformer embedded between the imaginary circuit and the real circuit. The imaginary circuit becomes a dual circuit of the real circuit. This filter consists of terminating resistors, inductors, capacitors and ideal transformers. This prototype circuit is simulated by using operational amplifiers. A 3rd-order complex Chebyshev bandpass filter is designed and its frequency response is measured. Finally, the sensitivity property of the proposed filter is evaluated by a computer simulation.

  • A Third-Order Low-Pass Notch RC Active Filter with a Minimum Number of Equal-Valued Capacitors

    Yukio ISHIBASHI  

     
    LETTER-Analog Circuits and Signal Processing

      Vol:
    E76-A No:10
      Page(s):
    1863-1865

    We propose a third-order low-pass notch filter realized by a single operational amplifier and a minimum number of equal-valued capacitors. As a design example we realize a Chebyshev filter with a ripple of 0.5 dB and it is shown that the experiment result is very good.

  • Cancellation Technique of Parasitics in Active Filter Design

    Takao TSUKUTAKI  Masaru ISHIDA  Yutaka FUKUI  

     
    LETTER-Methods and Circuits for Signal Processing

      Vol:
    E76-A No:6
      Page(s):
    957-960

    This letter presents a technique to cancel the parasitic effects of operational amplifier (op amp) in active filter design. To minimize the effects, an op amp model considering the parasitics (i.e. both parasitic poles and zeros) is utilized. It is shown that undesirable factors in the transfer function due to the parasitics can be canceled well by predistorting the passive element values of the circuit. As an example, an active-R highpass filter is evaluated both theoretically and numerically. In this way, the proposed technique can be effectively incorporated into the design of active filters.