The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] optical burst switching network(3hit)

1-3hit
  • An Efficient Multicast Forwarding Method for Optical Bursts under Restricted Number of Burst Replicas

    Nagao OGINO  Hajime NAKAMURA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:3
      Page(s):
    828-837

    Optical burst switching (OBS) is a promising approach for the realization of future flexible high-speed optical networks. In particular, a multicast forwarding method for optical bursts is important if an efficient high-speed grid computing network is to be realized. In OBS networks, the number of burst replicas generated at each node is strongly restricted due to optical power impairment of multicast bursts. Moreover, unrestricted replication of multicast bursts at each OBS node may not be advantageous because an increase in the number of multicast bursts within the network causes more frequent deflection forwarding of both multicast and unicast bursts. This paper proposes an efficient hop-by-hop multicast forwarding method for optical bursts, where idle output ports are selected based on scores simply calculated using a routing table that each OBS node holds. This method can mitigate increases in loss rate and transfer delay of multicast bursts, even if the number of burst replicas generated at each OBS node is strongly restricted. Moreover, this method can efficiently mitigate an increase in the number of multicast bursts within the network by avoiding unnecessary replication of multicast bursts at each OBS node. Simulation results show that the proposed method can actually mitigate degradation of the loss rate and transfer delay for multicast bursts under the restricted number of burst replicas at each OBS node. Moreover, when the arrival rate of multicast bursts is large relative to that of unicast bursts, the proposed method is able to improve the loss rates of both multicast and unicast bursts by switching the forwarding method for the multicast bursts to the simple unicast forwarding method without burst replication.

  • A Decentralized Optical Bursts Routing Based on Adaptive Load Splitting into Pre-Calculated Multiple Paths

    Nagao OGINO  Naritoshi ARAHATA  

     
    PAPER-Traffic issues

      Vol:
    E88-B No:12
      Page(s):
    4507-4516

    In optical burst switching (OBS) networks, the contention of optical bursts is the most serious problem due to the lack of buffers within the networks. Various deflection routing schemes and a routing scheme based on pre-calculated multiple paths have been proposed to resolve the contention. The latter routing scheme can successfully maintain a relatively limited transfer delay of optical bursts. This paper proposes a new decentralized routing scheme based on multiple paths to effectively resolve the contention of optical bursts. In this scheme, each source node splits the traffic load into pre-calculated multiple paths adaptively according to the measured loss rate of the optical bursts transferred through each path. This scheme does not require frequent notification of the measured loss rate because each source node selects one of the multiple paths probabilistically. In the OBS networks, the average transfer delay in the multi-path routing always exceeds that in a single-path routing because alternative paths with a larger transfer delay are also utilized in the multi-path routing. Thus, this paper proposes an adaptive load splitting method in which load splitting ratios for the multiple paths are autonomously adjusted to minimize the average transfer delay based on the condition that the required loss rate of optical bursts is satisfied. The performance of the proposed scheme was evaluated by computer simulation and based on the evaluation results; the ability of the proposed scheme to adjust the load splitting ratios for the multiple paths autonomously and avoid the contention of optical bursts adaptively is clarified even if the traffic load applied to the OBS network changes.

  • Deflection Routing for Optical Bursts Considering Possibility of Contention at Downstream Nodes

    Nagao OGINO  Hideaki TANAKA  

     
    PAPER-Network

      Vol:
    E88-B No:9
      Page(s):
    3660-3667

    Deflection routing is one of the promising approaches to resolve contention in the optical burst switching networks. In the conventional deflection routing scheme, optical bursts may be unable to traverse the route evaluated to select an outgoing link because of the contention at succeeding downstream transit nodes. As a result, the optical bursts may traverse a different route resulting in a long distance or decreased performance. This paper proposes a deflection routing scheme that considers the possibility of the contention at downstream nodes. This scheme utilizes the "expected route distance" instead of the static route distance toward a destination node. The expected route distance considers the possibility of contention at each downstream transit node and is calculated using measured link blocking probabilities at each downstream transit node. The selection priority of each outgoing link is given dynamically based on its expected route distance toward a destination node. By considering the possibility of contention at downstream nodes, a routing scheme with high performance can be realized. The loss rate of optical bursts is improved when an imbalanced load is applied to the network, and the loss rate of optical bursts is also improved when the network includes links with extremely different distances.