1-14hit |
Noboru YOSHIKANE Itsuro MORITA Hideaki TANAKA
The design of an energy-efficient wavelength division multiplexing (WDM) transponder is proposed and effectiveness of the proposed WDM transponder is experimentally studied. The proposed WDM transponder interworking with the link-aggregation technique possessed by a layer 2 switch can achieve power saving depending on traffic volume variations by utilizing an adaptive interface control. Monitoring methods for the link connectivity of a sleep link are also discussed.
Michiaki HAYASHI Nobutaka MATSUMOTO Kosuke NISHIMURA Hideaki TANAKA
Various network services, such as virtual private network, cloud computing and Internet protocol television, are often provided across multiple network operators. The difficulty in managing the quality of service across multiple operator domains is the barrier to adoption especially to service level agreement-sensitive and mission critical cases. Federating network resources among operators is necessary to manage the quality of service across operators. To manage network resources of other operator domains, the network operator's federation mechanisms aiming at a future open access network model are essential. In this paper, the mechanisms of the signaling process as well as the capability of the bandwidth broker are proposed for open access networking, where multiple operators are connected via a common access network operator. Considering that both the next generation network and the non-next generation network architectures must coexist, we have analyzed federation mechanisms for establishing practical functional extensions to existing bandwidth broker implementations for the federation signaling. Based on the analysis, the designs of the federation signaling and the required bandwidth broker functional models are proposed. The proposed design is prototyped and the demonstration of the federation signaling shows that the federation mechanism can assure the bandwidth of a targeted live data stream on demand across the trunk and the access network operators even under a congested situation.
Naoto SASAOKA Hideaki TANAKA Yuki ISHIKAWA Takaharu NAKANISHI Yoshio ITOH
In orthogonal frequency division multiplexing (OFDM) system, a guard interval (GI) is used to remove the inter-symbol interference (ISI) due to a multipath channel. It is difficult to set an optimal GI length in the environment whose multipath varies. In this paper, we propose a variable guard interval based on the estimated maximum delay of a multipath channel. The maximum delay is estimated from a channel impulse response (CIR), which is estimated by a preamble symbol. However, since the estimated CIR includes the noise, it is difficult to decide the optimal GI. In order to solve the problem, we introduce the method which selects the path whose signal to noise ratio is high. Additionally, the information of the optimal GI length is required to be transmitted from a receiver to a transmitter. In this paper, we use an acknowledgment (ACK) frame for the feedback of the GI information.
Yukio TSUKISHIMA Michiaki HAYASHI Tomohiro KUDOH Akira HIRANO Takahiro MIYAMOTO Atsuko TAKEFUSA Atsushi TANIGUCHI Shuichi OKAMOTO Hidemoto NAKADA Yasunori SAMESHIMA Hideaki TANAKA Fumihiro OKAZAKI Masahiko JINNO
Platforms of hosting services are expected to provide a virtual private computing infrastructure with guaranteed levels of performance to support each reservation request sent by a client. To enhance the performance of the computing infrastructure in responding to reservation requests, the platforms are required to reserve, coordinate, and control globally distributed computing and network resources across multiple domains. This paper proposes Grid Network Service -- Web Services Interface version 2 (GNS-WSI2). GNS-WSI2 is a resource-reservation messaging protocol that establishes a client-server relationship. A server is a kind of management system in the management plane, and it allocates available network resources within its own domain in response to each reservation request from a client. GNS-WSI2 has the ability to reserve network resources rapidly and reliably over multiple network domains. This paper also presents the results of feasibility tests on a transpacific testbed that validate GNS-WSI2 in terms of the scalable reservation of network resources over multiple network domains. In the tests, two computing infrastructures over multiple network domains are dynamically provided for scientific computing and remote-visualization applications. The applications are successfully executed on the provided infrastructures.
The optical network is a promising approach for realizing a scalable backbone network. In backbone networks, survivability is very important because great volumes of traffic incur damage from faulty equipment. To address this issue, various recovery schemes have been proposed for optical backbone networks. Among those schemes, shared mesh restoration utilizes link bandwidth efficiently because the backup lightpaths share link bandwidth if they protect against different failures and are never utilized simultaneously. However, a route computation method for the backup lightpaths that promotes such bandwidth sharing is necessary to achieve efficient bandwidth utilization. This paper proposes a distributed route computation method for the backup lightpaths in shared mesh restoration. In this method, the link weight is estimated to be smaller if a backup lightpath newly established can share the link bandwidth with the backup lightpaths already accommodated in that link. The link weight can be calculated using the Markov Decision Theory. The bandwidth sharing between the backup lightpaths can be promoted by selecting the shortest route based on such modified link weights. The proposed method effectively realizes efficient utilization of the link bandwidth and achieves low loss rate of reliable lightpath establishment requests under the same traffic load. The proposed method restricts the amount of link state information advertised by the routing protocol and achieves a sufficiently small amount of route calculation.
Michiaki HAYASHI Tomohiro OTANI Hideaki TANAKA Masatoshi SUZUKI
Implementation issues on generalized multi-protocol label switching (GMPLS) -based photonic switching networks are experimentally analyzed. A resilient control plane architecture using in-fiber and out-of-fiber control channels is proposed to resolve issues of establishing the control plane in out-of-band networks. The resilient control plane is demonstrated in a photonic cross-connect (PXC) -based GMPLS network involving a 1,000 km transmission line. Fast signaling for provisioning and restoration operation is accomplished by implementing in-fiber control channels as primary, and the out-of-fiber control channels effectively operate as secondary and restore messaging of the control information between neighbors. The control channel protection is initiated by the link management protocol (LMP). Using the test bed, optical layer routing operation is investigated to assess the effects on the signal quality of wavelength paths, and transparent routing of the wavelength paths over one-hop and two-hops route is demonstrated within 1 dB difference regarding the Q factor. Stable operation of loss of light (LOL) -triggered restoration is demonstrated by setting the optical level threshold 5 dB higher than the amplified spontaneous emission (ASE) noise level.
Histogram equalization (HE) is the one of the simplest and most effective methods for contrast enhancement. It can automatically define the gray-level mapping function based on the distribution of gray-level included in the image. However, since HE does not use a spatial feature included in the input image, HE fails to produce satisfactory results for broad range of low-contrast images. The differential gray-level histogram (DH), which is contained edge information of the input image, was defined and the differential gray-level histogram equalization (DHE) has been proposed. The DHE shows better enhancement results compared to HE for many kinds of images. In this paper, we propose a generalized histogram equalization (GHE) including HE and DHE. In GHE, the histogram is created using the power of the differential gray-level, which includes the spatial features of the image. In HE, the mean brightness of the enhancement image cannot be controlled. On the other hand, GHE can control the mean brightness of the enhancement image by changing the power, thus, the mean brightness of the input image can be perfectly preserved while maintaining good contrast enhancement.
The optical network represents a promising approach to achieve a scalable backbone network. In backbone networks, survivability is important because high volumes of traffic are prone to be damaged by faulty equipment. Various design methods for survivable optical networks have been proposed, although none considering the simultaneous maintenance of multiple transmission lines has been proposed to our knowledge. This paper proposes a design method for survivable optical networks where multiple transmission lines sharing common transmission equipment may suffer simultaneous damage, due to failure in the transmission equipment. Moreover, two transmission lines can be maintained simultaneously. A mathematical programming model to obtain the optimum lightpath arrangement is presented assuming three kinds of lightpath recovery schemes. The relation between the required transmission line capacity and the combination pattern of two transmission lines that undergo maintenance is clarified using the proposed design method.
Masatoshi SUZUKI Noboru EDAGAWA Hidenori TAGA Hideaki TANAKA Shu YAMAMOTO Yukitoshi TAKAHASHI Shigeyuki AKIBA
Feasibility of 20 Gbit/s single channel transoceanic soliton transmission systems with a simple EDFA repeaters configuration has been studied. Both a simple and versatile soliton pulse generator and a polarization insensitive optical demultiplexer, which can provide a almost square shape optical gate with duration of full bit time period, have been proposed and demonstrated by using sinusoidally modulated electroabsorption modulators. The optical time-division multiplexing/demultiplexing scheme using the optical demultiplexer results in drastic improvement of bit error rate characteristics. We have experimentally confirmed that the use of alternating-amplitude solitons is an efficient way to mitigate not only soliton-soliton interaction but also Gordon-Haus timing jitter constraints in multi-ten Gbit/s soliton transmission. Timing jitter reduction using relatively wide band optical filter bas been investigated in 20 Gbit/s loop experiments and single-carrier, single-polarization 20 Gbit/s soliton data transmission over 11500 km with bit error rate of below 10-9 has been experimentally demonstrated, using the modulator-based soliton source, the optical demultiplexer, the alternation-amplitude solitons, and wide-band optical filters. Obtained 230 Tbit/skm transmission capacity shows the feasibility of 20 Gbit/s single channel soliton transoceanic systems using fully practical technologies.
Integration of the MPLS network and the optical mesh network is a promising approach to realize an efficient backbone network. Because large volumes of traffic incur damage from failure, survivability is important in the backbone network. In the MPLS over optical networks, a pair of primary LSP (Label Switched Path) and secondary LSP needs to be established on two optical link-disjoint routes assuming all single optical link failures. However, two link-disjoint routes in the MPLS layer may not correspond to two link-disjoint routes in the optical layer. Thus, a pair of primary and secondary LSPs should be routed considering link-disjointness in the optical layer. In the MPLS over optical networks, secondary LSPs can mutually share lightpath bandwidth if those secondary LSPs correspond to the primary LSPs that never fail simultaneously. Thus, routing of secondary LSPs should promote sharing of the lightpath bandwidth among the secondary LSPs. The primary and secondary LSPs with variable bandwidths should efficiently be packed into fewer lightpaths with a fixed bandwidth. Moreover, if all the LSPs accommodated in a lightpath can be re-routed to other lightpaths, this lightpath can then be released. By re-routing only secondary LSPs, unnecessary lightpaths may be released without disturbance of the conveyed traffic. This paper proposes an efficient routing scheme to establish primary and secondary LSPs with variable bandwidths through the MPLS over optical network. This routing scheme satisfies the above conditions. The bandwidth of each lightpath is efficiently utilized by this routing scheme, and the loss rate of LSP requests can be reduced. This paper also proposes an efficient re-routing scheme to remove secondary LSPs from selected lightpaths through which the efficiency of channel utilization in the optical links is increased, and the loss rate of LSP requests can be reduced as a result. Both the proposed routing and re-routing schemes are quantitatively evaluated and the effectiveness of those schemes is verified by computer simulation.
Deflection routing is one of the promising approaches to resolve contention in the optical burst switching networks. In the conventional deflection routing scheme, optical bursts may be unable to traverse the route evaluated to select an outgoing link because of the contention at succeeding downstream transit nodes. As a result, the optical bursts may traverse a different route resulting in a long distance or decreased performance. This paper proposes a deflection routing scheme that considers the possibility of the contention at downstream nodes. This scheme utilizes the "expected route distance" instead of the static route distance toward a destination node. The expected route distance considers the possibility of contention at each downstream transit node and is calculated using measured link blocking probabilities at each downstream transit node. The selection priority of each outgoing link is given dynamically based on its expected route distance toward a destination node. By considering the possibility of contention at downstream nodes, a routing scheme with high performance can be realized. The loss rate of optical bursts is improved when an imbalanced load is applied to the network, and the loss rate of optical bursts is also improved when the network includes links with extremely different distances.
Seii SAI Onur ALTINTAS John KENNEY Hideaki TANAKA Yuji INOUE
Intelligent Transport System (ITS), aiming to provide innovative services related to traffic management, road safety and convenience, has drawn much attention in academic and industrial worlds in recent years. Japan has been considered as an advanced country in ITS development. This paper first gives an overview of the current ITS operated in Japan including Vehicle Information and Communication System (VICS), Electronic Toll Collection System (ETC), and ITS-spot system. Then this paper introduces the trends and the directions of future ITS including the development of driver-assistant type of road safety system in Japan and USA, and the potential use of white space to meet the additional ITS needs in the future.
Michiaki HAYASHI Hideaki TANAKA Masatoshi SUZUKI Shigeyuki AKIBA
The operation of a polarization mode dispersion (PMD) compensator using a polarizer and a Faraday rotator-based polarization controller (FRPC) is analyzed in detail, and the compensation performance is experimentally evaluated in 40 Gbit/s operation. The evaluation results show that a wide range of differential group delay over a bit period can almost be completely compensated using the PMD compensator. The characteristics of electrical spectrum-based signal monitoring methods are investigated in detail, and the results shows advantages of a low frequency band monitoring method that produces about double the wider dynamic range than a fundamental repetition frequency monitoring method. The automated PMD compensator using a polarizer and a FRPC driven by the low frequency band monitoring method is experimentally investigated using a terrestrial 40 Gbit/s wavelength division multiplexing system involving 350-km installed single-mode fibers. The PMD compensator produces highly stable signal performance in the field environment for a long term and reduces the standard deviation of the Q-factor distribution.
Hidenori TAKAHASHI Itsuro MORITA Hideaki TANAKA
The required bit resolution of digital-analog-converter (DAC) for optical OFDM was evaluated through simulation and experiment. We found that the signal degradation caused by quantization depends on the number of subcarriers theoretically, but the other noise generated in experiment suppresses the dependency. Additionally, signal degradation caused by quantization is independent of subcarrier modulation, and the performance improvement saturates with increasing bit resolution. With the criteria for the BER of 110-3, the required DAC resolution by simulation with ideal analog-digital-converter at receiver is 3 bits for QPSK, 4 bits for 8-QAM and 5 bits for 16-QAM and 32-QAM. From the experimental result, the required bit resolution is increased as 6 bits for 32-QAM.