The search functionality is under construction.

Author Search Result

[Author] Tomohiro KUDOH(10hit)

1-10hit
  • Design and Implementation of RHiNET-2/NI0: A Reconfigurable Network Interface for Cluster Computing

    Tomonori YOKOYAMA  Naoyuki IZU  Jun-ichiro TSUCHIYA  Konosuke WATANABE  Hideharu AMANO  Tomohiro KUDOH  

     
    PAPER

      Vol:
    E86-D No:5
      Page(s):
    789-795

    A reconfigurable network interface called RHiNET-2/NI0 is developed for parallel processing of PCs distributed within one or more floors of a building. Two configurations: the HS (High Speed) configuration with only a high-speed primitive and the DSM (Distributed Shared Memory) configuration which supports sophisticated primitives can be selected by the network requirement. From the empirical evaluation, it appears that the HS configuration markedly improves the latency of data transfer compared with traditional network interfaces. On the other hand, the DSM configuration executes sophisticated primitives for distributed shared memory more than twice as fast as that of software implementation.

  • High-Resolution Timer-Based Packet Pacing Mechanism on the Linux Operating System

    Ryousei TAKANO  Tomohiro KUDOH  Yuetsu KODAMA  Fumihiro OKAZAKI  

     
    PAPER

      Vol:
    E94-B No:8
      Page(s):
    2199-2207

    Packet pacing is a well-known technique for reducing the short-time-scale burstiness of traffic, and software-based packet pacing has been categorized into two approaches: the timer interrupt-based approach and the gap packet-based approach. The former was originally hard to implement for Gigabit class networks because it requires the operating system to handle too frequent periodic timer interrupts, thus incurring a large overhead. On the other hand, a gap packet-based packet pacing mechanism achieves precise pacing without depending on the timer resolution. However, in order to guarantee the accuracy of rate control, the system must be able to transmit packets at the wire rate. In this paper, we propose a high-resolution timer-based packet pacing mechanism that determines the transmission timing of packets by using a sub-microsecond resolution timer. The high-resolution timer is a light-weight mechanism compared to the traditional low-resolution periodic timer. With recent progress in hardware protocol offload technologies and multicore-aware network protocol stacks, we believe high-resolution timer-based packet pacing has become practical. Our experimental results show that the proposed mechanism can work on a wider range of systems without degrading the accuracy of rate control. However, a higher CPU load is observed when the number of traffic classes increases, compared to a gap packet-based pacing mechanism.

  • Wavelength Division Multiple Access Ring -- Virtual Topology on a Simple Ring Network --

    Xiaoshe DONG  Tomohiro KUDOH  Hideharu AMANO  

     
    PAPER-Computer Systems

      Vol:
    E81-D No:4
      Page(s):
    345-354

    In this paper, Wavelength Division Multiple access (WDM) ring is proposed for interconnection in workstation clusters or parallel machines. This network consists of ring connected routers each of which selectively passes signals addressed in some particular wavelengths. Other wavelengths are once converted to electric signals, and re-transmitted being addressed in different wavelengths. Wavelengths are assigned to divisors of the number of nodes in the system. Using the regular WDM ring with imaginary nodes, the diameter and average distance are reduced even if the number of nodes has few divisors. It provides better diameter and average distance than that of the uni-directional torus. Although the diameter and average distance is worse than that of ShuffleNet, the physical structure of the WDM ring is simple and the available number of nodes is flexible.

  • The RDT Router Chip: A Versatile Router for Supporting a Distributed Shared Memory

    Hiroaki NISHI  Ken-ichiro ANJO  Tomohiro KUDOH  Hideharu AMANO  

     
    PAPER-Interconnection Networks

      Vol:
    E80-D No:9
      Page(s):
    854-862

    JUMP-1 is currently under development by seven Japanese universities to establish techniques for building an efficient distributed shared memory on a massively parallel processor. It provides a coherent cache with reduced hierarchical bit-map directory scheme to achieve cost effective and high performance management. Messages for coherent cache are transferred through a fat tree on the RDT (Recursive Diagonal Torus) interconnection network. RDT router supports versatile functions including multicast and acknowledge combining for the reduced hierarchical bit-map directory scheme. By using 0.5µm BiCMOS SOG technology, it can transfer all packets synchronized with a unique CPU clock (50MHz). Long coaxial cables (4m at maximum) are directly driven with the ECL interface of this chip. Using the dual port RAM, packet buffers allow to push and pull a flit of the packet simultaneously.

  • Architecture and Evaluation of a Third-Generation RHiNET Switch for High-Performance Parallel Computing

    Hiroaki NISHI  Shinji NISHIMURA  Katsuyoshi HARASAWA  Tomohiro KUDOH  Hideharu AMANO  

     
    PAPER

      Vol:
    E86-D No:10
      Page(s):
    1987-1995

    RHiNET-3/SW is the third-generation switch used in the RHiNET-3 system. It provides both low-latency processing and flexible connection due to its use of a credit-based flow-control mechanism, topology-free routing, and deadlock-free routing. The aggregate throughput of RHiNET-3/SW is 80 Gbps, and the latency is 140 ns. RHiNET-3/SW also provides a hop-by-hop retransmission mechanism. Simulation demonstrated that the effective throughput at a node in a 64-node torus RHiNET-3 system is equivalent to the effective throughput of a 64-bit 33-MHz PCI bus and that the performance of RHiNET-3/SW almost equals or exceeds the best performance of RHiNET-2/SW, the second-generation switch. Although credit-based flow control requires 26% more gates than rate-based flow control to manage the virtual channels (VCs), it requires less VC memory than rate-based flow control. Moreover, its use in a network system reduces latency and increases the maximum throughput compared to rate-based flow control.

  • A Routing Algorithm for Multihop WDM Ring

    Xiaoshe DONG  Tomohiro KUDOH  Hideharu AMANO  

     
    PAPER-Computer Networks

      Vol:
    E82-D No:2
      Page(s):
    422-430

    Divisor-Skip Wavelength Division Multiplexing (DS-WDM) ring is an optical interconnection network for workstation clusters or parallel machines which can connect various number of nodes easily using wavelength division multiplexing techniques. However, the wavelength-ordered routing algorithm proposed for the DS-WDM ring requires complicated processes in each router. Here, a new routing algorithm called the comparing dimensional number routing algorithm for the DS-WDM ring is proposed and evaluated. Although the diameter and average distance are almost same as traditional wavelength-ordered routing, the cost and latency are much reduced.

  • A High-Speed, Highly-Reliable Network Switch for Parallel Computing System Using Optical Interconnection

    Shinji NISHIMURA  Tomohiro KUDOH  Hiroaki NISHI  Koji TASHO  Katsuyoshi HARASAWA  Shigeto AKUTSU  Shuji FUKUDA  Yasutaka SHIKICHI  

     
    PAPER-Optical Interconnection Systems

      Vol:
    E84-C No:3
      Page(s):
    288-294

    RHiNET-2/SW is a network switch for the RHiNET-2 parallel computing system. RHiNET-2/SW enables high-speed and long-distance data transmission between PC nodes for parallel computing. In RHiNET-2/SW, a one-chip CMOS switch-LSI and eight pairs of 800-Mbit/s 12-channel parallel optical interconnection modules are mounted into a single compact board. This switch allows high-speed 8-Gbit/s/port parallel optical data transmission over a distance of up to 100 m, and the aggregate throughput is 64 Gbit/s/board. The CMOS-ASIC switching LSI enables high-throughput (64 Gbit/s) packet switching with a single chip. The parallel optical interconnection modules enable high-speed and low-latency data transmission over a long distance. The structure and layout of the printed circuit board is optimized for high-speed, high-density device implementation to overcome electrical problems such as signal propagation-loss and crosstalk. All of the electrical interfaces are composed of high-speed CMOS-LVDS logic (800 Mbit/s/pin). We evaluated the reliability of the optical I/O port through long-term data transmission. No errors were detected during 50 hours of continuous data transmission at a data rate of 800 Mbit/s 10 bits (BER: < 2.44 10-14). This test result shows that RHiNET-2/SW can provide high-throughput, long-transmission-length, and highly reliable data transmission in a practical parallel computing system.

  • A WAN-Optimized Live Storage Migration Mechanism toward Virtual Machine Evacuation upon Severe Disasters

    Takahiro HIROFUCHI  Mauricio TSUGAWA  Hidemoto NAKADA  Tomohiro KUDOH  Satoshi ITOH  

     
    PAPER

      Vol:
    E96-D No:12
      Page(s):
    2663-2674

    Wide-area VM migration is a technology with potential to aid IT services recovery since it can be used to evacuate virtualized servers to safe locations upon a critical disaster. However, the amount of data involved in a wide-area VM migration is substantially larger compared to VM migrations within LAN due to the need to transfer virtualized storage in addition to memory and CPU states. This increase of data makes it challenging to relocate VMs under a limited time window with electrical power. In this paper, we propose a mechanism to improve live storage migration across WAN. The key idea is to reduce the amount of data to be transferred by proactively caching virtual disk blocks to a backup site during regular VM operation. As a result of pre-cached disk blocks, the proposed mechanism can dramatically reduce the amount of data and consequently the time required to live migrate the entire VM state. The mechanism was evaluated using a prototype implementation under different workloads and network conditions, and we confirmed that it dramatically reduces the time to complete a VM live migration. By using the proposed mechanism, it is possible to relocate a VM from Japan to the United States in just under 40 seconds. This relocation would otherwise take over 1500 seconds, demonstrating that the proposed mechanism was able to reduce the migration time by 97.5%.

  • Cooperative VM Migration: A Symbiotic Virtualization Mechanism by Leveraging the Guest OS Knowledge

    Ryousei TAKANO  Hidemoto NAKADA  Takahiro HIROFUCHI  Yoshio TANAKA  Tomohiro KUDOH  

     
    PAPER

      Vol:
    E96-D No:12
      Page(s):
    2675-2683

    A virtual machine (VM) migration is useful for improving flexibility and maintainability in cloud computing environments. However, VM monitor (VMM)-bypass I/O technologies, including PCI passthrough and SR-IOV, in which the overhead of I/O virtualization can be significantly reduced, make VM migration impossible. This paper proposes a novel and practical mechanism, called Symbiotic Virtualization (SymVirt), for enabling migration and checkpoint/restart on a virtualized cluster with VMM-bypass I/O devices, without the virtualization overhead during normal operations. SymVirt allows a VMM to cooperate with a message passing layer on the guest OS, then it realizes VM-level migration and checkpoint/restart by using a combination of a user-level dynamic device configuration and coordination of distributed VMMs. We have implemented the proposed mechanism on top of QEMU/KVM and the Open MPI system. All PCI devices, including Infiniband, Ethernet, and Myrinet, are supported without implementing specific para-virtualized drivers; and it is not necessary to modify either of the MPI runtime and applications. Using the proposed mechanism, we demonstrate reactive and proactive FT mechanisms on a virtualized Infiniband cluster. We have confirmed the effectiveness using both a memory intensive micro benchmark and the NAS parallel benchmark.

  • Grid Network Service-Web Services Interface Version 2 Achieving Scalable Reservation of Network Resources Across Multiple Network Domains via Management Plane

    Yukio TSUKISHIMA  Michiaki HAYASHI  Tomohiro KUDOH  Akira HIRANO  Takahiro MIYAMOTO  Atsuko TAKEFUSA  Atsushi TANIGUCHI  Shuichi OKAMOTO  Hidemoto NAKADA  Yasunori SAMESHIMA  Hideaki TANAKA  Fumihiro OKAZAKI  Masahiko JINNO  

     
    PAPER-Network

      Vol:
    E93-B No:10
      Page(s):
    2696-2705

    Platforms of hosting services are expected to provide a virtual private computing infrastructure with guaranteed levels of performance to support each reservation request sent by a client. To enhance the performance of the computing infrastructure in responding to reservation requests, the platforms are required to reserve, coordinate, and control globally distributed computing and network resources across multiple domains. This paper proposes Grid Network Service -- Web Services Interface version 2 (GNS-WSI2). GNS-WSI2 is a resource-reservation messaging protocol that establishes a client-server relationship. A server is a kind of management system in the management plane, and it allocates available network resources within its own domain in response to each reservation request from a client. GNS-WSI2 has the ability to reserve network resources rapidly and reliably over multiple network domains. This paper also presents the results of feasibility tests on a transpacific testbed that validate GNS-WSI2 in terms of the scalable reservation of network resources over multiple network domains. In the tests, two computing infrastructures over multiple network domains are dynamically provided for scientific computing and remote-visualization applications. The applications are successfully executed on the provided infrastructures.