The search functionality is under construction.

Keyword Search Result

[Keyword] optical cross-connects(2hit)

1-2hit
  • Performance Evaluation and Experiment of a Configuration Algorithm for Three-Stage Multi-Granularity Optical Cross-Connects

    Yongmin QI  Wei GUO  Yi ZHANG  Siye ZUO  Yaohui JIN  Weisheng HU  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:6
      Page(s):
    1747-1754

    We study the configuration issue of three-stage multi-granularity optical cross-connects (MG-OXC) for the dynamic traffic model in all-optical networks. From the single node point of view, we propose a configuration algorithm to configure different granularity cross-connects for arrival sub-requests with different traffic types and bandwidths. The performance of the configuration algorithm is evaluated by simulation and, furthermore, is validated by experiment based on our flexible Multi-functional Optical Switching Testbed (MOST).

  • Autonomously Controlled Multiprotocol Wavelength Switching Network for Internet Backbones

    Yoshiaki YAMABAYASHI  Masafumi KOGA  Satoru OKAMOTO  

     
    INVITED PAPER

      Vol:
    E83-B No:10
      Page(s):
    2210-2215

    In order that they fully support human activities, new network services and applications are overwhelming conventional ones, such as telephony, facsimile, and telegraph. Demands for digital networks are exploding, not only in terms of quantity but also quality. Nobody can predict where these demands will lead. Traffic engineering, which is impossible in pure Internet protocol (IP) -based networks, is recognized as being indispensable for quality of service (QoS) control. It includes guaranteed services in terms of bandwidth, delay, delay variation (jitter), and service protection. The "engineered tunnel" through IP network supports virtual private networks (VPNs) and allows us to develop voice-over-IP (VoIP), teleconferencing and other secure private network services. This paper proposes the "photonic router" which makes use of wavelength-based networks for signal routing. IP packets having the same destination are bundled into a wavelength path. Interchange nodes along the path route control path routing on the basis of wavelength information, not on IP headers, which can not be read or processed with current optical techniques. In short, wavelength path routing offers "cut-through" in the photonic layer. This paper shows its feasibility by describing the combination of an optical cross-connect, payload assembler/disassembler, label controller, and IP router. Optical cross-connect systems, which are now being intensively studied worldwide, are deemed to be key equipment for a wavelength-path network with centralized control system. This paper proposes to apply the cross-connect to an IP network with distributed autonomous control.