The search functionality is under construction.

Keyword Search Result

[Keyword] optical modulators(3hit)

1-3hit
  • Highly Reliable and Compact InP-Based In-Phase and Quadrature Modulators for Over 400 Gbit/s Coherent Transmission Systems

    Hajime TANAKA  Tsutomu ISHIKAWA  Takashi KITAMURA  Masataka WATANABE  Ryuji YAMABI  Ryo YAMAGUCHI  Naoya KONO  Takehiko KIKUCHI  Morihiro SEKI  Tomokazu KATSUYAMA  Mitsuru EKAWA  Hajime SHOJI  

     
    PAPER

      Pubricized:
    2020/07/10
      Vol:
    E103-C No:11
      Page(s):
    661-668

    We fabricated an InP-based dual-polarization In-phase and Quadrature (DP-IQ) modulator consisting of a Mach-Zehnder (MZ) modulator array integrated with RF termination resistors and backside via holes for high-bandwidth coherent driver modulators and revealed its high reliability. These integrations allowed the chip size (Chip size: 4.4mm×3mm) to be reduced by 59% compared with the previous chip without these integrations, that is, the previous chip needed 8 chip-resistors for terminating RF signals and 12 RF electrode pads for the electrical connection with these resistors in a Signal-Ground-Signal configuration. This MZ modulator exhibited a 3-dB bandwidth of around 40 GHz as its electrical/optical response, which is sufficient for over 400 Gbit/s coherent transmission systems using 16-ary quadrature amplitude modulation (QAM) and 64QAM signals. Also, we investigated a rapid degradation which affects the reliability of InP-based DP-IQ modulators. This rapid degradation we called optical damage is caused by strong incident light power and a high reverse bias voltage condition at the entrance of an electrode in each arm of the MZ modulators. This rapid degradation makes it difficult to estimate the lifetime of the chip using an accelerated aging test, because the value of the breakdown voltage which induces optical damage varies considerably depending on conditions, such as light power, operation wavelength, and chip temperature. Therefore, we opted for the step stress test method to investigate the lifetime of the chip. As a result, we confirmed that optical damage occurred when photo-current density at the entrance of an electrode exceeded threshold current density and demonstrated that InP-based modulators did not degrade unless operation conditions reached threshold current density. This threshold current density was independent of incident light power, operation wavelength and chip temperature.

  • Proposal of in-line wavelength-selective modulator based on waveguide interferometer

    Kenji KINTAKA  Ryotaro MORI  Tetsunosuke MIURA  Shogo URA  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    749-754

    A new wavelength-selective optical modulator was proposed and discussed. The modulator consists of three kinds of distributed Bragg reflectors (DBRs) integrated in a single straight waveguide. The waveguide can guide TE$_0$ and TE$_1$ modes, and an in-line Michelson interferometer is constructed by the three DBRs. An operation-wavelength wave among incident wavelength-division-multiplexed TE$_1$ guided waves is split into TE$_0$ and TE$_1$ guided waves by one of DBRs, and combined by the same DBR to be TE$_0$ output wave with interference after one of waves is phase-modulated. A modulator using an electro-optic (EO) polymer is designed, and the static performance was predicted theoretically. An operation principle was confirmed experimentally by a prototype device utilizing a thermo-optic effect instead of the EO effect.

  • Gb/s-Range Semiconductor and Ti:LiNbO3 Guided-Wave Optical Modulators.

    Keiro KOMATSU  Rangaraj MADABHUSHI  

     
    INVITED PAPER-Optomicrowave Devices

      Vol:
    E79-C No:1
      Page(s):
    3-13

    External modulators, which have smaller chirping characteristics than laser diode direct modulation, are desired for high-speed and long-distance optical fiber communication systems. This paper reviews semiconductor and Ti:LiNbO3 guided-wave high-speed optical modulators. Since several effects exist for semiconductor materials, various kinds of semiconductor optical modulators have been investigated. Among these, absorption type intensity modulators based on Franz-Keldysh effect in bulk materials and quantum confined stark effect in multiple quantum well materials, are promising because of compactness, low drive voltage nature and integration ease with DFB lasers. Recent progress on semiconductor absorption modulators and DFB-LD integrated semiconductor modulators is discussed with emphasis on a novel fabrication method using selective area growth by MOVPE (Metal Organic Vapor Phase Epitaxy). The Ti:LiNbO3 optical modulators are also important, due to the advantage of superior chirping characteristics and wide bandwidth. Since the Ti:LiNbO3 optical modulator has low propagation loss and low conductor loss natures for optical waves and microwaves, respectively, the traveling-wave electrode configuration is suitable for high-speed operation. Here, broadband Ti:LiNbO3 optical modulators are discussed with emphasis on traveling-wave electrode design.