1-6hit |
Tomoaki KATO Jun-ichi SASAKI Tsuyoshi SHIMODA Hiroshi HATAKEYAMA Takemasa TAMANUKI Shotaro KITAMURA Masayuki YAMAGUCHI Tatsuya SASAKI Keiro KOMATSU Mitsuhiro KITAMURA Masataka ITOH
The hybrid electrical/optical multi-chip integration technique for optical modules for optical network system has been developed. Employing the technique, a 44 broadcast-and-select type optical matrix switch module has been realized. The module consists of four sets of silica waveguide 1 : 4 splitters/4 : 1 combiners, four 4-channel arrays of polarization insensitive semiconductor optical amplifiers with spot-size converters as optical gates, printed wiring chips for electrical wiring and single mode fibers for optical signal interface on planar waveguide platform fabricated by atmospheric pressure chemical vapor deposition. All the gates and the wiring chips were mounted precisely onto the platform at once in flip-chip manner by self-align technique using AuSn solder bumps. Coupling loss between the waveguide and the SOA gate was estimated to be 4.5 dB. Averaged fiber-to-fiber signal gain, on-off ratio and polarization dependent loss for each of the signal paths was 7 dB 2 dB, more than 40 dB and 0.5 dB, respectively. High speed 10 Gb/s photonic cell switching as short as 2 nsec has been successfully achieved.
Keiro KOMATSU Rangaraj MADABHUSHI
External modulators, which have smaller chirping characteristics than laser diode direct modulation, are desired for high-speed and long-distance optical fiber communication systems. This paper reviews semiconductor and Ti:LiNbO3 guided-wave high-speed optical modulators. Since several effects exist for semiconductor materials, various kinds of semiconductor optical modulators have been investigated. Among these, absorption type intensity modulators based on Franz-Keldysh effect in bulk materials and quantum confined stark effect in multiple quantum well materials, are promising because of compactness, low drive voltage nature and integration ease with DFB lasers. Recent progress on semiconductor absorption modulators and DFB-LD integrated semiconductor modulators is discussed with emphasis on a novel fabrication method using selective area growth by MOVPE (Metal Organic Vapor Phase Epitaxy). The Ti:LiNbO3 optical modulators are also important, due to the advantage of superior chirping characteristics and wide bandwidth. Since the Ti:LiNbO3 optical modulator has low propagation loss and low conductor loss natures for optical waves and microwaves, respectively, the traveling-wave electrode configuration is suitable for high-speed operation. Here, broadband Ti:LiNbO3 optical modulators are discussed with emphasis on traveling-wave electrode design.
Tatsuya SASAKI Masayuki YAMAGUCHI Keiro KOMATSU Ikuo MITO
Photonic integrated circuits (PICs) are required for future optical communication systems, because various optical components need to be compactly integrated in one-chip configurations with a small number of optical alignment points. Bandgap energy controlled selective metal organic vapor phase epitaxy (MOVPE) is a breakthrough technique for the fabrication of PICs because this technique enables the simultaneous formation of waveguides for various optical components in one-step growth. Directly formed waveguides on a mask-patterned substrate can be obtained without using conventional mesa-etching of the semiconductor layers. The waveguide width is precisely controlled by the mask pattern. Therefore, high device uniformity and yield are expected. Since we proposed and demonstrated this technique in 1991, various PICs have been reported. Using electroabsorption modulator integrated distributed feedback laser diodes, 2.5 Gb/s-550 km transmission experiments have been successfully conducted. Another advantage of the selective MOVPE technique is the capability to form narrow waveguide layers. We have demonstrated a polarization-insensitive semiconductor optical amplifier that consists of a selectively formed narrow (less than 1 µm wide) bulk active layer. For a four-channel array, a chip gain of more than 20 dB and a gain difference between TE and TM inputs of less than 1 dB were obtained. We have also reported an optical switch matrix and an optical transceiver PIC for access optical networks. By using a low-loss optical waveguide, a 0 dB fiber-to-fiber gain for the 14 switch matrix and 0 dBm fiber output power from the 1.3 µm transceiver PIC were obtained. In this paper, the selective MOVPE technique and its applications to various kinds of PICs are discussed.
Hiroyuki YAMAZAKI Yuji FURUSHIMA Yasutaka SAKATA Yuichiro OKUNUKI Yoshihiro SASAKI Keiro KOMATSU
We propose a device called the Waveguide width abruptly EXpanded Spot-Size-Converter integrated Laser Diode (WEX-SSC-LD) that has been designed to improve lasing characteristics by achieving a steep photoluminescence wavelength change along the cavity. The waveguide parameter was optimized by a three-dimensional beam propagation method to reduce mode conversion and absorption losses. The WEX-SSC-LD's showed superior lasing characteristics such as threshold currents of 5.8 mA at 25C and 19 mA at 85C and operation current of 57.5 mA at an output power of 10 mW for 85C. These excellent lasing characteristics were achieved due to the steeper bandgap-energy shift in the SSC section near the LD section side by introducing the WEX-SSC structure as well as the high-quality MQW active layer grown by selective MOVPE and the precisely controlled pn-pn current blocking structure. The coupling loss to normal single-mode fiber was as low as 1.8 dB while maintaining a large coupling tolerance of 1.8 µm. These excellent coupling characteristics are very promising for passively aligned optical modules.
Tomoaki KATO Jun-ichi SASAKI Tsuyoshi SHIMODA Hiroshi HATAKEYAMA Takemasa TAMANUKI Shotaro KITAMURA Masayuki YAMAGUCHI Tatsuya SASAKI Keiro KOMATSU Mitsuhiro KITAMURA Masataka ITOH
The hybrid electrical/optical multi-chip integration technique for optical modules for optical network system has been developed. Employing the technique, a 44 broadcast-and-select type optical matrix switch module has been realized. The module consists of four sets of silica waveguide 1 : 4 splitters/4 : 1 combiners, four 4-channel arrays of polarization insensitive semiconductor optical amplifiers with spot-size converters as optical gates, printed wiring chips for electrical wiring and single mode fibers for optical signal interface on planar waveguide platform fabricated by atmospheric pressure chemical vapor deposition. All the gates and the wiring chips were mounted precisely onto the platform at once in flip-chip manner by self-align technique using AuSn solder bumps. Coupling loss between the waveguide and the SOA gate was estimated to be 4.5 dB. Averaged fiber-to-fiber signal gain, on-off ratio and polarization dependent loss for each of the signal paths was 7 dB 2 dB, more than 40 dB and 0.5 dB, respectively. High speed 10 Gb/s photonic cell switching as short as 2 nsec has been successfully achieved.
Takeshi TAKEUCHI Tatsuya SASAKI Kiichi HAMAMOTO Masako HAYASHI Kikuo MAKITA Kenkou TAGUCHI Keiro KOMATSU
As a low-cost optical transceiver for access network systems, we propose a new monolithic transceiver photonic integrated circuit (PIC) fabricated by bandgap energy controlled selective metalorganic vapor phase epitaxy (MOVPE). In the PIC, all optical components are monolithically integrated. Thus, the number of optical alignment points is significantly reduced and the assembly costs of the module is decreased compared to those of hybrid modules, that use silica waveguides. Moreover, by using selective MOVPE, extremely low-loss buried heterostructure waveguides can be fabricated without any etching. In-plane bandgap energy control is also possible, allowing the formation of active and passive core layers simultaneously without complicated fabrication. The transceiver PIC showed fiber-coupled output power of more than 1 mW and receiver bandwidth of 7 GHz. Modulation and detection operations at 500 Mb/s were also demonstrated. As a cost effective fabrication technique for monolithic PICs, bandgap energy controlled selective MOVPE is a promising candidate.