The search functionality is under construction.

Keyword Search Result

[Keyword] opto-electronic integrated circuit(3hit)

1-3hit
  • Characterization of Silicon Mach-Zehnder Modulator in 20-Gbps NRZ-BPSK Transmission

    Kazuhiro GOI  Kenji ODA  Hiroyuki KUSAKA  Akira OKA  Yoshihiro TERADA  Kensuke OGAWA  Tsung-Yang LIOW  Xiaoguang TU  Guo-Qiang LO  Dim-Lee KWONG  

     
    PAPER

      Vol:
    E96-C No:7
      Page(s):
    974-980

    20-Gbps non return-to-zero (NRZ) – binary phase shift keying (BPSK) using the silicon Mach-Zehnder modulator is demonstrated and characterized. Measurement of a constellation diagram confirms successful modulation of 20-Gbps BPSK with the silicon modulator. Transmission performance is characterized in the measurement of bit-error-rate in accumulated dispersion range from -347 ps/nm to +334 ps/nm using SMF and a dispersion compensating fiber module. Optical signal-to-noise ratio required for bit-error-rate of 10-3 is 10.1 dB at back-to-back condition. It is 1.2-dB difference from simulated value. Obtained dispersion tolerance less than 2-dB power penalty for bit-error-rate of 10-3 is -220 ps/nm to +230 ps/nm. The symmetric dispersion tolerance indicates chirp-free modulation. Frequency chirp inherent in the modulation mechanism of the silicon MZM is also discussed with the simulation. The effect caused by the frequency chirp is limited to 3% shift in the chromatic dispersion range of 2 dB power penalty for BER 10-3. The effect inherent in the silicon modulation mechanism is confirmed to be very limited and not to cause any significant degradation in the transmission performance.

  • Design and Fabrication of Large Scale Micro-LED Arrays and Silicon Driver for OEIC Devices

    Sang-Baie SHIN  Ko-Ichiro IIJIMA  Hiroshi OKADA  Sho IWAYAMA  Akihiro WAKAHARA  

     
    PAPER

      Vol:
    E95-C No:5
      Page(s):
    898-903

    In this paper, we designed and fabricated large scale micro-light-emitting-diode (LED) arrays and silicon driver for single chip device for realizing as prototypes of heterogeneous optoelectronic integrated circuits (OEICs). The large scale micro-LED arrays were separated by a dry etching method from mesa structure to 16,384 pixels of 128 128, each with a size of 15 µm in radius. Silicon driver was designed the additional bonding pad on each driving transistor for bonding with micro-LED arrays. Fabricated micro-LED arrays and driver were flip-chip bonded using anisotropic conductive adhesive.

  • Crosstalk Characteristic of Monolithically Integrated Receiver Arrays

    Yuji AKAHORI  Mutsuo IKEDA  Atsuo KOHZEN  Yoshio ITAYA  

     
    PAPER

      Vol:
    E77-C No:1
      Page(s):
    42-49

    The crosstalk characteristics of a long-wavelength monolithically integrated photoreceiver array are analyzed. The device consists of an array of transimpedance photoreceivers fabricated on a semi-insulating InP substrate. The distance between the photodetectors is large enough to suppress the photonic crosstalk. Therefore, the crosstalk of the device is mainly due to signal propagation from the channels through the power line shared by each channel on the chip. This crosstalk is inevitable to the photoreceiver arrays which employ common power lines. The magnitude of the crosstalk largely depends on the impedance of the power-supply circuit outside the chip. The crosstalk spectrum often has a peak and recess structure. The crosstalk peak at the edge of the operating band-width is due to the resonance characteristic of the transimpedance amplifier. The other peak and recess structures on the spectrum are due to the resonance phenomena of on-chip and off-chip capacitors and inductance on the power-supply line outside the chip. This crosstalk can be reduced by using on-chip bypass capacitance and dumping resistance. However, the resonance due to the capacitance and inductance on the power-supply circuit outside the chip can't be controlled by the on-chip components. Therefore, an optimized design for the power supply circuit outside the chip is also indispensable for suppressing crosstalk.