1-3hit |
Guo-Wei LU Kazi Sarwar ABEDIN Tetsuya MIYAZAKI
We propose and experimentally demonstrate an all-optical broadband wavelength conversion scheme with simultaneous power amplification based on a pump-modulated fiber optic parametric amplifier (FOPA). All-optical tunable wavelength conversion from one to two wavelengths was achieved with ≥13 dB extinction ratio and <2.7-dB power penalty, accompanied by a high (≥37 dB) and flat ( 3 dB variation) FOPA gain spectrum over 47 nm.
Akira SHIRAKAWA Takayoshi KOBAYASHI
An ultra-broadband optical parametric amplification can be attained by a noncollinear phase-matching. The group-velocity matching of the signal and idler reduces the signal-pulse width to 14-fs in an optical parametric amplifier based on a β-BaB2O4 crystal pumped by a second harmonics of a Ti: sapphire regenerative amplifier. This simple novel method shows the potential light source of a tunable sub-10-fs pulse in a visible region.
A coherent communication system using squeezed light is one of candidates for a realization of super-reliable systems. In order to design such a system, it is essential to understand and to analyze modulators mathematically. However, quantum noise of squeezed light has a colored spectrum which changes with respect to phase of a local laser. Therefore the optimization of the relationship between signal and quantum noise spectrums is required at a modulator to obtain the ultimate performance of the communication system. In this paper, some ideas of modulators for squeezed light are proposed and their spectrum transformations are given. After the brief summary of squeezed quantum noise, a new concept which originates from the restriction of the local laser phase is applied to it. This concept makes a problem originated from a colored quantum noise spectrum more serious. It results in the optimization problem for the relationship between the quantum noise spectrum and signal power spectrum. The solution of this problem is also given under the restriction of local laser phase. As a result, a general design theory for coherent communication system using the squeezed light is given.