The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] part based(3hit)

1-3hit
  • Self-Channel Attention Weighted Part for Person Re-Identification

    Lin DU  Chang TIAN  Mingyong ZENG  Jiabao WANG  Shanshan JIAO  Qing SHEN  Wei BAI  Aihong LU  

     
    LETTER-Image

      Pubricized:
    2020/09/01
      Vol:
    E104-A No:3
      Page(s):
    665-670

    Part based models have been proved to be beneficial for person re-identification (Re-ID) in recent years. Existing models usually use fixed horizontal stripes or rely on human keypoints to get each part, which is not consistent with the human visual mechanism. In this paper, we propose a Self-Channel Attention Weighted Part model (SCAWP) for Re-ID. In SCAWP, we first learn a feature map from ResNet50 and use 1x1 convolution to reduce the dimension of this feature map, which could aggregate the channel information. Then, we learn the weight map of attention within each channel and multiply it with the feature map to get each part. Finally, each part is used for a special identification task to build the whole model. To verify the performance of SCAWP, we conduct experiment on three benchmark datasets, including CUHK03-NP, Market-1501 and DukeMTMC-ReID. SCAWP achieves rank-1/mAP accuracy of 70.4%/68.3%, 94.6%/86.4% and 87.6%/76.8% on three datasets respectively.

  • Object Tracking with Embedded Deformable Parts in Dynamic Conditional Random Fields

    Suofei ZHANG  Zhixin SUN  Xu CHENG  Lin ZHOU  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/01/19
      Vol:
    E99-D No:4
      Page(s):
    1268-1271

    This work presents an object tracking framework which is based on integration of Deformable Part based Models (DPMs) and Dynamic Conditional Random Fields (DCRF). In this framework, we propose a DCRF based novel way to track an object and its details on multiple resolutions simultaneously. Meanwhile, we tackle drastic variations in target appearance such as pose, view, scale and illumination changes with DPMs. To embed DPMs into DCRF, we design specific temporal potential functions between vertices by explicitly formulating deformation and partial occlusion respectively. Furthermore, temporal transition functions between mixture models bring higher robustness to perspective and pose changes. To evaluate the efficacy of our proposed method, quantitative tests on six challenging video sequences are conducted and the results are analyzed. Experimental results indicate that the method effectively addresses serious problems in object tracking and performs favorably against state-of-the-art trackers.

  • Skew Estimation by Parts

    Soma SHIRAISHI  Yaokai FENG  Seiichi UCHIDA  

     
    PAPER-Pattern Recognition

      Vol:
    E96-D No:7
      Page(s):
    1503-1512

    This paper proposes a new part-based approach for skew estimation of document images. The proposed method first estimates skew angles on rather small areas, which are the local parts of characters, and subsequently determines the global skew angle by aggregating those local estimations. A local skew estimation on a part of a skewed character is performed by finding an identical part from prepared upright character images and calculating the angular difference. Specifically, a keypoint detector (e.g. SURF) is used to determine the local parts of characters, and once the parts are described as feature vectors, a nearest neighbor search is conducted in the instance database to identify the parts. Finally, a local skew estimation is acquired by calculating the difference of the dominant angles of brightness gradient of the parts. After the local skew estimation, the global skew angle is estimated by the majority voting of those local estimations, disregarding some noisy estimations. Our experiments have shown that the proposed method is more robust to short and sparse text lines and non-text backgrounds in document images compared to conventional methods.