The search functionality is under construction.

Keyword Search Result

[Keyword] particle swarm algorithm(2hit)

1-2hit
  • Access Point Selection Algorithm Based on Coevolution Particle Swarm in Cell-Free Massive MIMO Systems

    Hengzhong ZHI  Haibin WAN  Tuanfa QIN  Zhengqiang WANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/01/13
      Vol:
    E106-B No:7
      Page(s):
    578-585

    In this paper, we investigate the Access Point (AP) selection problem in Cell-Free Massive multiple-input multiple-output (MIMO) system. Firstly, we add a connecting coefficient to the uplink data transmission model. Then, the problem of AP selection is formulated as a discrete combinatorial optimization problem which can be dealt with by the particle swarm algorithm. However, when the number of optimization variables is large, the search efficiency of the traditional particle swarm algorithm will be significantly reduced. Then, we propose an ‘user-centric’ cooperative coevolution scheme which includes the proposed probability-based particle evolution strategy and random-sampling-based particle evaluation mechanism to deal with the search efficiency problem. Simulation results show that proposed algorithm has better performance than other existing algorithms.

  • BMM: A Binary Metaheuristic Mapping Algorithm for Mesh-Based Network-on-Chip

    Xilu WANG  Yongjun SUN  Huaxi GU  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2018/11/26
      Vol:
    E102-D No:3
      Page(s):
    628-631

    The mapping optimization problem in Network-on-Chip (NoC) is constraint and NP-hard, and the deterministic algorithms require considerable computation time to find an exact optimal mapping solution. Therefore, the metaheuristic algorithms (MAs) have attracted great interests of researchers. However, most MAs are designed for continuous problems and suffer from premature convergence. In this letter, a binary metaheuristic mapping algorithm (BMM) with a better exploration-exploitation balance is proposed to solve the mapping problem. The binary encoding is used to extend the MAs to the constraint problem and an adaptive strategy is introduced to combine Sine Cosine Algorithm (SCA) and Particle Swarm Algorithm (PSO). SCA is modified to explore the search space effectively, while the powerful exploitation ability of PSO is employed for the global optimum. A set of well-known applications and large-scale synthetic cores-graphs are used to test the performance of BMM. The results demonstrate that the proposed algorithm can improve the energy consumption more significantly than some other heuristic algorithms.