The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] passive communications(2hit)

1-2hit
  • Performance Evaluation of Variable Bandwidth Channel Allocation Scheme in Multiple Subcarrier Multiple Access

    Nitish RAJORIA  Hiromu KAMEI  Jin MITSUGI  Yuusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/03
      Vol:
    E101-B No:2
      Page(s):
    564-572

    Multiple Subcarrier Multiple Access (MSMA) enables concurrent sensor data streamings from multiple wireless and batteryless sensors using the principle of subcarrier backscatter used extensively in passive RFID. Since the interference cancellation performance of MSMA depends on the Signal to Interference plus Noise Ratio of each subcarrier, the choice of channel allocation scheme is essential. Since the channel allocation is a combinatorial problem, obtaining the true optimal allocation requires a vast amount of examinations which is impracticable in a system where we have tens of sensor RF tags. It is particularly true when we have variable distance and variable bandwidth sensor RF tags. This paper proposes a channel allocation scheme in the variable distance and variable bandwidth MSMA system based on a newly introduced performance index, total contamination power, to prioritize indecision cases. The performance of the proposal is evaluated with existing methods in terms of average communication capacity and system fairness using MATLAB Monte Carlo simulation to reveal its advantage. The accuracy of the simulation is also verified with the result obtained from the brute force method.

  • Comparative Analysis on Channel Allocation Schemes in Multiple Subcarrier Passive Communication System

    Nitish RAJORIA  Yuki IGARASHI  Jin MITSUGI  Yusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER

      Vol:
    E98-B No:9
      Page(s):
    1777-1784

    Multiple subcarrier passive communication is a new research area which enables a type of frequency division multiple access with wireless and batteryless sensor RF tags just by implementing RF switches to produce dedicated subcarriers. Since the mutual interference among subcarriers is unevenly distributed over the frequency band, careless allocations of subcarrier frequencies may result in degraded network performance and inefficient use of the frequency resource. In this paper, we examine four subcarrier frequency allocation schemes using MATLAB numerical simulations. The four schemes are evaluated in terms of the communication capacity and access fairness among sensor RF tags. We found that the subcarrier allocation scheme plays an important role in multiple subcarrier communication and can improves the communication capacity by 35%.