The search functionality is under construction.

Author Search Result

[Author] Yuki IGARASHI(3hit)

1-3hit
  • Concurrent Backscatter Streaming from Batteryless and Wireless Sensor Tags with Multiple Subcarrier Multiple Access

    Nitish RAJORIA  Yuki IGARASHI  Jin MITSUGI  Yuusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/06/13
      Vol:
    E100-B No:12
      Page(s):
    2121-2128

    This paper proposes a novel multiple access method that enables concurrent sensor data streaming from multiple batteryless, wireless sensor tags. The access method is a pseudo-FDMA scheme based on the subcarrier backscatter communication principle, which is widely employed in passive RFID and radar systems. Concurrency is realized by assigning a dedicated subcarrier to each sensor tag and letting all sensor tags backscatter simultaneously. Because of the nature of the subcarrier, which is produced by constant rate switching of antenna impedance without any channel filter in the sensor tag, the tag-to-reader link always exhibits harmonics. Thus, it is important to reject harmonics when concurrent data streaming is required. This paper proposes a harmonics rejecting receiver to allow simultaneous multiple subcarrier usage. This paper particularly focuses on analog sensor data streaming which minimizes the functional requirements on the sensor tag and frequency bandwidth. The harmonics rejection receiver is realized by carefully handling group delay and phase delay of the subcarrier envelope and the carrier signal to accurately produce replica of the harmonics by introducing Hilbert and inverse Hilbert transformations. A numerical simulator with Simulink and a hardware implementation with USRP and LabVIEW have been developed. Simulations and experiments reveal that even if the CIR before harmonics rejection is 0dB, the proposed receiver recovers the original sensor data with over 0.98 cross-correlation.

  • A 10-b 50 MS/s 500-mW A/D Converter Using a Differential-Voltage Subconverter

    Takahiro MIKI  Hiroyuki KOUNO  Toshio KUMAMOTO  Yasushi KINOSHITA  Takayuki IGARASHI  Keisuke OKADA  

     
    PAPER

      Vol:
    E77-C No:5
      Page(s):
    846-852

    A BiCMOS A/D converter using a "differential voltage subconverter," which directly converts a voltage difference of complementary analog inputs to a digital code, is described. Fully differential architecture has advantages in immunity of common-mode error and in reduction of supply voltage. This differential-voltage subconverter realizes the fully differential A/D conversion without using interpolation technique. This subconverter is free from CR delay caused in the ladder resistors. Circuit techniques for high-accuracy conversion with single 5-V power supply, such as compensation technique for VBE modulation in emitter degeneration amplifier, are also described. A 10-b A/D converter is fabricated in a 0.8-µm BiCMOS process with fT of 9 GHz. It successfully operates at 50 MS/s with 500-mW power consumption and with 5-V single supply.

  • Comparative Analysis on Channel Allocation Schemes in Multiple Subcarrier Passive Communication System

    Nitish RAJORIA  Yuki IGARASHI  Jin MITSUGI  Yusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER

      Vol:
    E98-B No:9
      Page(s):
    1777-1784

    Multiple subcarrier passive communication is a new research area which enables a type of frequency division multiple access with wireless and batteryless sensor RF tags just by implementing RF switches to produce dedicated subcarriers. Since the mutual interference among subcarriers is unevenly distributed over the frequency band, careless allocations of subcarrier frequencies may result in degraded network performance and inefficient use of the frequency resource. In this paper, we examine four subcarrier frequency allocation schemes using MATLAB numerical simulations. The four schemes are evaluated in terms of the communication capacity and access fairness among sensor RF tags. We found that the subcarrier allocation scheme plays an important role in multiple subcarrier communication and can improves the communication capacity by 35%.