The search functionality is under construction.

Author Search Result

[Author] Keisuke OKADA(8hit)

1-8hit
  • Transient Analysis of Switched Current Source

    Takahiro MIKI  Yasuyuki NAKAMURA  Keisuke OKADA  Yasutaka HORIBA  

     
    PAPER

      Vol:
    E75-C No:3
      Page(s):
    288-296

    A current source with current switches (switched current source) is widely used in various analog ICs. One of its typical application is data converters. This paper describes an analysis of the transient behavior of a switched current source. The analysis has clarified conditions and causes of overshooting in the output waveform. The analysis also clarifies dependence of the settling time on parameters. The waveform heavily depends on time constant and initial charge at the internal node where current source and current switch are connected. They can cause the overshooting and limit the settling time. A phenomenon of acceleration of the settling time and an influence of the charge coupling through current switches are also discussed. A chart mentioned in this paper is useful for the initial design and the improvement of switched current sources.

  • Static Linearity Error Analysis of Subranging A/D Converters

    Takashi OKUDA  Toshio KUMAMOTO  Masao ITO  Takahiro MIKI  Keisuke OKADA  Tadashi SUMI  

     
    PAPER

      Vol:
    E79-A No:2
      Page(s):
    210-216

    An 8-to 10-bit CMOS A/D converter with a conversion rate of more than 16 megasample/second is required in consumer video systems. Subranging architecture is widely used to realize such A/D converters. This architecture, however, exhibits an reference voltage error caused by resistor ladder loadings. The error has been discussed with respect to a flash A/D converter by Dingwall. However, it can not be applied for a subranging A/D converter as it is. The analysis of this error is very important in realizing the desired accuracy of a subranging A/D converter. This paper describes a static analysis to improve the linearity, and reports the results of this analysis for two typical types, one with invividual comparator arrays for coarse and fine A/D conversions, and the other with the same comparator array for both conversions. This analysis makes it clear that a subranging A/D converter has unique saw-tooth characteristic in fine linearity errors. Furthermore, this analysis clarifies what conditions are necessary to achieve the desired accuracy. It is necessary, for example, that the product of the total input capacitance of the comparators C, the conversion rate fs and the total ladder resistance R is less than 0.03 in A/D converters with individual comparator arrays and 0.016 in A/D converters with the same comparator array in order to achieve 10-bit accuracy.

  • A Single Chip H.32X Multimedia Communication Processor with CIF 30 fr/s MPEG-4/H.26X Bi-directional Codec

    Noriyuki MINEGISHI  Ken-ichi ASANO  Keisuke OKADA  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    482-490

    A single chip processor suitable for various multimedia communication products has been developed. This chip achieves real-time bi-directional encoding/decoding for CIF resolution video at a frame rate of 30 fr/s, and meets such standards, as H.320 and H.324. The chip is composed of a video-processing unit for MPEG-4 and H.26X standards, a DSP unit for speech codec and multiplex processes, and a RISC unit for managing the whole chip. By heterogeneous multiple processor architecture, careful study of task sharing for each processing unit and bus configuration, a single chip solution can be achieved with reasonable operation speed and low-power consumption suitable for consumer products. Moreover, by applying an original video processing unit architecture, this chip achieves real-time bi-directional encoding/decoding for CIF-resolution video at a frame rate of 30 fr/s. An original video bus was developed to provide high performance and low-power consumption while sharing one external memory which is necessary for various video processes and graphics functions. This shared memory also has the effect of minimizing die size and I/O ports. This chip has been fabricated with 4-metal 0.18 µm CMOS technology to produce a chip area of 10.510.5 mm2 with 1.2 W power dissipation including I/O power, at 1.8 V for internal supply and 3.3 V for I/O power supply.

  • A 10 bit 50 MS/s CMOS D/A Converter with 2.7 V Power Supply

    Takahiro MIKI  Yasuyuki NAKAMURA  Yoshikazu NISHIKAWA  Keisuke OKADA  Yasutaka HORIBA  

     
    PAPER

      Vol:
    E76-C No:5
      Page(s):
    738-745

    It has become an important subject to realize a high-speed D/A converter with low supply voltage. This paper discusses a 10 bit 50 MS/s CMOS D/A converter with 2.7 V power supply. Reduction of the supply voltage is achieved by developing "saturation-linear" biasing technique in current sources. In this scheme, a grounded transistor in cascode configuration is biased in linear region. High conversion rate is obtained by driving this grounded transistor directly. A charging transistor is also introduced into the current source for accelerating the settling time. The D/A converter is fabricated in a 1 µm CMOS process without using optional process steps. It successfully operates at 50 MS/s with 2.7 V power supply. The circuit techniques discussed here can be easily introduced into half-micron D/A converters.

  • A High Performance Multiplier and Its Application to an FlR Filter Dedicated to Digital Video Transmission

    Keisuke OKADA  Shun MORIKAWA  Sumitaka TAKEUCHI  Isao SHIRAKAWA  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    2106-2111

    A digital filter is one of the fundamental elements in the digital video transmission, and a multiplier acts as the key factor that determines the operation speed and silicon area of the filter. In terms of the digital video transmission, the required performance of a multiplier is to operate at the speed of 20-100 MHz but with the precision of 8-10 bits. In the case of implementing such an FIR filter with more than a certain number of taps, the same number of multipliers are necessary to realize the speed. Moreover, even though the coefficients to the filter are desired to be programmable, it is possible to change coefficients in the vertical fly-back interval of television receivers. This allows the preloadability of coefficients to the filter such that each coefficient can be treated as a constant during the filtering operation. Motivated by these requirements and functionalities, a novel multiplier and FIR filter architecture is described, which is to be synthesized with the use of a high level synthesis tool of COMPASS Design Navigator, partly with the aid of the manual design by means of a 0.8µm CMOS library.

  • A 350-MS/s 3.3V 8-bit CMOS D/A Converter Using a Delayed Driving Scheme

    Hiroyuki KOHNO  Yasuyuki NAKAMURA  Takahiro MIKI  Hiroyuki AMISHIRO  Keisuke OKADA  Tadashi SUMI  

     
    PAPER

      Vol:
    E80-A No:2
      Page(s):
    334-338

    High-end graphic systems with 3 million pixels require 8-bit D/A converters with more than 300-MS/s conversion rate. Furthermore, D/A converters need to operate with low supply voltage when they are integrated with large-scale digital circuits on a harf-micron CMOS process. This paper describes a 350-MS/s 8-bit CMOS D/A converter with 3.3-V power supply. A current source circuit with a delayed driving scheme is developed. This driving scheme reduces a fluctuation of internal node voltage of the current source circuit and high-speed swiching is realized. In addition to this driving scheme, two stages of latches are inserted into matrix decoder for reducing glitch energy and for enhancing decoding speed. The D/A converter is fabricated in a 0.5-µm CMOS process with single poly-silicon layer and double aluminum layers. Its settling time is less than 2.4 ns and it successfully operates at 350 MS/s.

  • A 10-b 50 MS/s 500-mW A/D Converter Using a Differential-Voltage Subconverter

    Takahiro MIKI  Hiroyuki KOUNO  Toshio KUMAMOTO  Yasushi KINOSHITA  Takayuki IGARASHI  Keisuke OKADA  

     
    PAPER

      Vol:
    E77-C No:5
      Page(s):
    846-852

    A BiCMOS A/D converter using a "differential voltage subconverter," which directly converts a voltage difference of complementary analog inputs to a digital code, is described. Fully differential architecture has advantages in immunity of common-mode error and in reduction of supply voltage. This differential-voltage subconverter realizes the fully differential A/D conversion without using interpolation technique. This subconverter is free from CR delay caused in the ladder resistors. Circuit techniques for high-accuracy conversion with single 5-V power supply, such as compensation technique for VBE modulation in emitter degeneration amplifier, are also described. A 10-b A/D converter is fabricated in a 0.8-µm BiCMOS process with fT of 9 GHz. It successfully operates at 50 MS/s with 500-mW power consumption and with 5-V single supply.

  • A Debug System for Heterogeneous Multiple Processors in a Single Chip for Multimedia Communication

    Noriyuki MINEGISHI  Ken-ichi ASANO  Hirokazu SUZUKI  Keisuke OKADA  Takashi KAN  

     
    PAPER-Debugging Multiple Processors

      Vol:
    E85-D No:10
      Page(s):
    1571-1578

    A debug system for heterogeneous multiple processors in a single chip has been developed. The system consists of the debug interface circuit integrated on the chip, the interface circuit board between the chip and PC, and the debug software implemented on a PC. This debug system has been designed for a multimedia communication processor, which includes an original video processor core, a RISC processor, and a DSP. The RISC processor controls the Video Processing Unit that includes an original video processor and other hardware functions. While in debug mode, the external debugger can control the Video Processing Unit in the same manner as the RISC processor. The JTAG based interface circuit contains registers for bus transaction for command, address, and data to be written, etc. and a bus transaction sequencer. In fact, this system can realize the same bus transaction control as the RISC processor's. By applying proposed debug system, simultaneous debug of the RISC Processing Unit and the Video Processing Unit can be realized. This allows problems to be investigated more quickly and the total time required for debugging is efficiently reduced. Without this technology an estimated 19 weeks is required to debug the chip, whereas use of this technology allowed debugging to be completed in 9 weeks.