The search functionality is under construction.

Author Search Result

[Author] Noriyuki MINEGISHI(4hit)

1-4hit
  • FOREWORD Open Access

    Noriyuki MINEGISHI  

     
    FOREWORD

      Vol:
    E103-A No:12
      Page(s):
    1407-1407
  • A Single Chip H.32X Multimedia Communication Processor with CIF 30 fr/s MPEG-4/H.26X Bi-directional Codec

    Noriyuki MINEGISHI  Ken-ichi ASANO  Keisuke OKADA  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E87-C No:4
      Page(s):
    482-490

    A single chip processor suitable for various multimedia communication products has been developed. This chip achieves real-time bi-directional encoding/decoding for CIF resolution video at a frame rate of 30 fr/s, and meets such standards, as H.320 and H.324. The chip is composed of a video-processing unit for MPEG-4 and H.26X standards, a DSP unit for speech codec and multiplex processes, and a RISC unit for managing the whole chip. By heterogeneous multiple processor architecture, careful study of task sharing for each processing unit and bus configuration, a single chip solution can be achieved with reasonable operation speed and low-power consumption suitable for consumer products. Moreover, by applying an original video processing unit architecture, this chip achieves real-time bi-directional encoding/decoding for CIF-resolution video at a frame rate of 30 fr/s. An original video bus was developed to provide high performance and low-power consumption while sharing one external memory which is necessary for various video processes and graphics functions. This shared memory also has the effect of minimizing die size and I/O ports. This chip has been fabricated with 4-metal 0.18 µm CMOS technology to produce a chip area of 10.510.5 mm2 with 1.2 W power dissipation including I/O power, at 1.8 V for internal supply and 3.3 V for I/O power supply.

  • VLSI Architecture Study of a Real-Time Scalable Optical Flow Processor for Video Segmentation

    Noriyuki MINEGISHI  Junichi MIYAKOSHI  Yuki KURODA  Tadayoshi KATAGIRI  Yuki FUKUYAMA  Ryo YAMAMOTO  Masayuki MIYAMA  Kousuke IMAMURA  Hideo HASHIMOTO  Masahiko YOSHIMOTO  

     
    PAPER-System LSIs and Microprocessors

      Vol:
    E89-C No:3
      Page(s):
    230-242

    An optical flow processor architecture is proposed. It offers accuracy and image-size scalability for video segmentation extraction. The Hierarchical Optical flow Estimation (HOE) algorithm [1] is optimized to provide an appropriate bit-length and iteration number to realize VLSI. The proposed processor architecture provides the following features. First, an algorithm-oriented data-path is introduced to execute all necessary processes of optical flow derivation allowing hardware cost minimization. The data-path is designed using 4-SIMD architecture, which enables high-throughput operation. Thereby, it achieves real-time optical flow derivation with 100% pixel density. Second, it has scalable architecture for higher accuracy and higher resolution. A third feature is the CMOS-process compatible on-chip 2-port DRAM for die-area reduction. The proposed processor has performance for CIF 30 fr/s with 189 MHz clock frequency. Its estimated core size is 6.025.33 mm2 with six-metal 90-nm CMOS technology.

  • A Debug System for Heterogeneous Multiple Processors in a Single Chip for Multimedia Communication

    Noriyuki MINEGISHI  Ken-ichi ASANO  Hirokazu SUZUKI  Keisuke OKADA  Takashi KAN  

     
    PAPER-Debugging Multiple Processors

      Vol:
    E85-D No:10
      Page(s):
    1571-1578

    A debug system for heterogeneous multiple processors in a single chip has been developed. The system consists of the debug interface circuit integrated on the chip, the interface circuit board between the chip and PC, and the debug software implemented on a PC. This debug system has been designed for a multimedia communication processor, which includes an original video processor core, a RISC processor, and a DSP. The RISC processor controls the Video Processing Unit that includes an original video processor and other hardware functions. While in debug mode, the external debugger can control the Video Processing Unit in the same manner as the RISC processor. The JTAG based interface circuit contains registers for bus transaction for command, address, and data to be written, etc. and a bus transaction sequencer. In fact, this system can realize the same bus transaction control as the RISC processor's. By applying proposed debug system, simultaneous debug of the RISC Processing Unit and the Video Processing Unit can be realized. This allows problems to be investigated more quickly and the total time required for debugging is efficiently reduced. Without this technology an estimated 19 weeks is required to debug the chip, whereas use of this technology allowed debugging to be completed in 9 weeks.