1-3hit |
Masaaki FUJIYOSHI Ruifeng LI Hitoshi KIYA
This paper proposes an encryption-then-compression (EtC) system-friendly data hiding scheme for images, where an EtC system compresses images after they are encrypted. The EtC system divides an image into non-overlapping blocks and applies four block-based processes independently and randomly to the image for visual encryption of the image. The proposed scheme hides data to a plain, i.e., unencrypted image and the scheme can take hidden data out from the image encrypted by the EtC system. Furthermore, the scheme serves reversible data hiding, so it can perfectly recover the unmarked image from the marked image whereas the scheme once distorts unmarked image for hiding data to the image. The proposed scheme copes with the three of four processes in the EtC system, namely, block permutation, rotation/flipping of blocks, and inverting brightness in blocks, whereas the conventional schemes for the system do not cope with the last one. In addition, these conventional schemes have to identify the encrypted image so that image-dependent side information can be used to extract embedded data and to restore the unmarked image, but the proposed scheme does not need such identification. Moreover, whereas the data hiding process must know the block size of encryption in conventional schemes, the proposed scheme needs no prior knowledge of the block size for encryption. Experimental results show the effectiveness of the proposed scheme.
Kosuke SHIMIZU Taizo SUZUKI Keisuke KAMEYAMA
We propose the cube-based perceptual encryption (C-PE), which consists of cube scrambling, cube rotation, cube negative/positive transformation, and cube color component shuffling, and describe its application to the encryption-then-compression (ETC) system of Motion JPEG (MJPEG). Especially, cube rotation replaces the blocks in the original frames with ones in not only the other frames but also the depth-wise cube sides (spatiotemporal sides) unlike conventional block-based perceptual encryption (B-PE). Since it makes intra-block observation more difficult and prevents unauthorized decryption from only a single frame, it is more robust than B-PE against attack methods without any decryption key. However, because the encrypted frames including the blocks from the spatiotemporal sides affect the MJPEG compression performance slightly, we also devise a version of C-PE with no spatiotemporal sides (NSS-C-PE) that hardly affects compression performance. C-PE makes the encrypted video sequence robust against the only single frame-based algorithmic brute force (ABF) attack with only 21 cubes. The experimental results show the compression efficiency and encryption robustness of the C-PE/NSS-C-PE-based ETC system. C-PE-based ETC system shows mixed results depending on videos, whereas NSS-C-PE-based ETC system shows that the BD-PSNR can be suppressed to about -0.03dB not depending on videos.
Kenta KURIHARA Masanori KIKUCHI Shoko IMAIZUMI Sayaka SHIOTA Hitoshi KIYA
In many multimedia applications, image encryption has to be conducted prior to image compression. This paper proposes a JPEG-friendly perceptual encryption method, which enables to be conducted prior to JPEG and Motion JPEG compressions. The proposed encryption scheme can provides approximately the same compression performance as that of JPEG compression without any encryption, where both gray scale images and color ones are considered. It is also shown that the proposed scheme consists of four block-based encryption steps, and provide a reasonably high level of security. Most of conventional perceptual encryption schemes have not been designed for international compression standards, but this paper focuses on applying the JPEG and Motion JPEG standards, as one of the most widely used image compression standards. In addition, this paper considers an efficient key management scheme, which enables an encryption with multiple keys to be easy to manage its keys.