This paper proposes an encryption-then-compression (EtC) system-friendly data hiding scheme for images, where an EtC system compresses images after they are encrypted. The EtC system divides an image into non-overlapping blocks and applies four block-based processes independently and randomly to the image for visual encryption of the image. The proposed scheme hides data to a plain, i.e., unencrypted image and the scheme can take hidden data out from the image encrypted by the EtC system. Furthermore, the scheme serves reversible data hiding, so it can perfectly recover the unmarked image from the marked image whereas the scheme once distorts unmarked image for hiding data to the image. The proposed scheme copes with the three of four processes in the EtC system, namely, block permutation, rotation/flipping of blocks, and inverting brightness in blocks, whereas the conventional schemes for the system do not cope with the last one. In addition, these conventional schemes have to identify the encrypted image so that image-dependent side information can be used to extract embedded data and to restore the unmarked image, but the proposed scheme does not need such identification. Moreover, whereas the data hiding process must know the block size of encryption in conventional schemes, the proposed scheme needs no prior knowledge of the block size for encryption. Experimental results show the effectiveness of the proposed scheme.
Masaaki FUJIYOSHI
Tokyo Metropolitan University
Ruifeng LI
Tokyo Metropolitan University
Hitoshi KIYA
Tokyo Metropolitan University
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Masaaki FUJIYOSHI, Ruifeng LI, Hitoshi KIYA, "A Scheme of Reversible Data Hiding for the Encryption-Then-Compression System" in IEICE TRANSACTIONS on Information,
vol. E104-D, no. 1, pp. 43-50, January 2021, doi: 10.1587/transinf.2020MUP0006.
Abstract: This paper proposes an encryption-then-compression (EtC) system-friendly data hiding scheme for images, where an EtC system compresses images after they are encrypted. The EtC system divides an image into non-overlapping blocks and applies four block-based processes independently and randomly to the image for visual encryption of the image. The proposed scheme hides data to a plain, i.e., unencrypted image and the scheme can take hidden data out from the image encrypted by the EtC system. Furthermore, the scheme serves reversible data hiding, so it can perfectly recover the unmarked image from the marked image whereas the scheme once distorts unmarked image for hiding data to the image. The proposed scheme copes with the three of four processes in the EtC system, namely, block permutation, rotation/flipping of blocks, and inverting brightness in blocks, whereas the conventional schemes for the system do not cope with the last one. In addition, these conventional schemes have to identify the encrypted image so that image-dependent side information can be used to extract embedded data and to restore the unmarked image, but the proposed scheme does not need such identification. Moreover, whereas the data hiding process must know the block size of encryption in conventional schemes, the proposed scheme needs no prior knowledge of the block size for encryption. Experimental results show the effectiveness of the proposed scheme.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.2020MUP0006/_p
Copy
@ARTICLE{e104-d_1_43,
author={Masaaki FUJIYOSHI, Ruifeng LI, Hitoshi KIYA, },
journal={IEICE TRANSACTIONS on Information},
title={A Scheme of Reversible Data Hiding for the Encryption-Then-Compression System},
year={2021},
volume={E104-D},
number={1},
pages={43-50},
abstract={This paper proposes an encryption-then-compression (EtC) system-friendly data hiding scheme for images, where an EtC system compresses images after they are encrypted. The EtC system divides an image into non-overlapping blocks and applies four block-based processes independently and randomly to the image for visual encryption of the image. The proposed scheme hides data to a plain, i.e., unencrypted image and the scheme can take hidden data out from the image encrypted by the EtC system. Furthermore, the scheme serves reversible data hiding, so it can perfectly recover the unmarked image from the marked image whereas the scheme once distorts unmarked image for hiding data to the image. The proposed scheme copes with the three of four processes in the EtC system, namely, block permutation, rotation/flipping of blocks, and inverting brightness in blocks, whereas the conventional schemes for the system do not cope with the last one. In addition, these conventional schemes have to identify the encrypted image so that image-dependent side information can be used to extract embedded data and to restore the unmarked image, but the proposed scheme does not need such identification. Moreover, whereas the data hiding process must know the block size of encryption in conventional schemes, the proposed scheme needs no prior knowledge of the block size for encryption. Experimental results show the effectiveness of the proposed scheme.},
keywords={},
doi={10.1587/transinf.2020MUP0006},
ISSN={1745-1361},
month={January},}
Copy
TY - JOUR
TI - A Scheme of Reversible Data Hiding for the Encryption-Then-Compression System
T2 - IEICE TRANSACTIONS on Information
SP - 43
EP - 50
AU - Masaaki FUJIYOSHI
AU - Ruifeng LI
AU - Hitoshi KIYA
PY - 2021
DO - 10.1587/transinf.2020MUP0006
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E104-D
IS - 1
JA - IEICE TRANSACTIONS on Information
Y1 - January 2021
AB - This paper proposes an encryption-then-compression (EtC) system-friendly data hiding scheme for images, where an EtC system compresses images after they are encrypted. The EtC system divides an image into non-overlapping blocks and applies four block-based processes independently and randomly to the image for visual encryption of the image. The proposed scheme hides data to a plain, i.e., unencrypted image and the scheme can take hidden data out from the image encrypted by the EtC system. Furthermore, the scheme serves reversible data hiding, so it can perfectly recover the unmarked image from the marked image whereas the scheme once distorts unmarked image for hiding data to the image. The proposed scheme copes with the three of four processes in the EtC system, namely, block permutation, rotation/flipping of blocks, and inverting brightness in blocks, whereas the conventional schemes for the system do not cope with the last one. In addition, these conventional schemes have to identify the encrypted image so that image-dependent side information can be used to extract embedded data and to restore the unmarked image, but the proposed scheme does not need such identification. Moreover, whereas the data hiding process must know the block size of encryption in conventional schemes, the proposed scheme needs no prior knowledge of the block size for encryption. Experimental results show the effectiveness of the proposed scheme.
ER -