The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] phase shifters(3hit)

1-3hit
  • Hybrid Precoding for mmWave Massive Beamspace MIMO System with Limited Resolution Overlapped Phase Shifters Network Open Access

    Ting DING  Jiandong ZHU  Jing YANG  Xingmeng JIANG  Chengcheng LIU  

     
    PAPER

      Pubricized:
    2024/03/25
      Vol:
    E107-C No:10
      Page(s):
    355-363

    Considering the non-convexity of hybrid precoding and the hardware constraints of practical systems, a hybrid precoding architecture, which combines limited-resolution overlapped phase shifter networks with lens array, is investigated. The analogy part is a beam selection network composed of overlapped low-resolution phase shifter networks. In particular, in the proposed hybrid precoding algorithm, the analog precoding improves array gain by utilizing the quantization beam alignment method, whereas the digital precoding schemes multiplexing gain by adopting a Wiener Filter precoding scheme with a minimum mean square error criterion. Finally, in the sparse scattering millimeter-wave channel for the uniform linear array, the proposed method is compared with the existing scheme by computer simulation by using the ideal channel state information and the non-ideal channel state information. It is concluded that the proposed scheme performs better in low signal-to-noise regions and can achieve a good compromise between system performance and hardware complexity.

  • A 15GHz-Band 4-Channel Transmit/Receive RF Core-Chip for High SHF Wide-Band Massive MIMO in 5G

    Koji TSUTSUMI  Takaya MARUYAMA  Wataru YAMAMOTO  Takanobu FUJIWARA  Tatsuya HAGIWARA  Ichiro SOMADA  Eiji TANIGUCHI  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    825-832

    A 15GHz-band 4-channel transmit/receive RF core-chip is presented for high SHF wide-band massive MIMO in 5G. In order to realize small RF frontend for 5G base stations, both 6bit phase shifters (PS) and 0.25 dB resolution variable gain amplifiers (VGA) are integrated in TX and RX paths of 4-channels on the chip. A PS calibration technique is applied to compensate the error of 6bit PS caused by process variations. A common gate current steering topology with tail current control is used for VGA to enhance the gain control accuracy. The 15GHz-band RF core-chip fabricated in 65 nm CMOS process achieved phase control error of 1.9deg. rms., and amplitude control error of 0.23 dB. rms.

  • Experimental Investigations of Intermodulation Distortion in Tunable Ferroelectric Phase Shifters

    Dongsu KIM  James Stevenson KENNEY  

     
    PAPER-Devices

      Vol:
    E88-C No:12
      Page(s):
    2310-2315

    This paper investigates intermodultation distortion in ferroelectric phase shifters depending on bias voltage. Two analog phase shifters based on barium-strontium-titantate (BST) coated sapphire substrates have been fabricated with interdigital capacitors (IDCs) which have 2 and 4 µm spacing between adjacent fingers. In case of the phase shifter with 4 µm-spaced IDCs, a phase shift of more than 121was obtained with a maximum insertion loss of 1.8 dB from 2.4 to 2.5 GHz over a bias voltage range of 0-140 V. The phase shifter with 2 µm-spaced IDCs exhibited a phase shift of more than 135with a maximum insertion loss of 2.37 dB in the same frequency range. In this case, a bias voltage of 80 V was used. Using 2 and 4 µm-spaced phase shifters, a third-order intermodulation (IM3) measurement was carried out with a two-tone cancellation setup to investigate nonlinearity, resulting in an input third-order intercept point (IIP3) of about 30.5 dBm and 38.5 dBm, respectively.