1-2hit |
Takashi MARUYAMA Shigeo UDAGAWA
We have proposed a waveguide to microstrip line transition, which perpendicularly connects one waveguide into two microstrip lines. It consists of only a waveguide and a dielectric substrate with copper foils. A backshort waveguide for typical transitions is not needed. Additionally, the transition does not require via holes on the substrate. These innovations simplify the structure and the manufacturing process. We assume that our transition and antennas are co-located on the substrate. We reduced the undesirable radiation from the transition so as not to contaminate the desirable radiation pattern. In this paper, we address output phase of our transition. Since the transition has two MSL output ports connecting to different radiation elements, the phase error between two dividing signals leads to beam shift in the radiation pattern. Unfortunately, misalignment of etching pattern between copper layers of the substrate is unavoidable. The structural asymmetry causes the phase error. In order to tolerate the misalignment, we propose to add a pair of open stubs to the transition. We show that the structure drastically stabilizes the output phase. Though the stubs create some extra radiation, we confirm that the impact is not significant. Moreover, we fabricate and measure a prototype antenna that uses the transition. In the case of with stubs, the radiation pattern is unchanged even if the misalignment is severe.
Shota TAKEUCHI Kazuki SAKUMA Kazutoshi KATO Yasuyuki YOSHIMIZU Yu YASUDA Shintaro HISATAKE Tadao NAGATSUMA
For phase stabilization of two-tone coherent millimeter-wave/microwave carrier generation, two types of phase detection schemes were devised based on lightwave interferometric technique, the Mach-Zehnder interferometric method and the pseudo Mach-Zehnder interferometric method. The former system showed clear eye patterns at both OOK and PSK modulations of 1 Gbit/s on the 12.5-GHz carrier. The latter system demonstrated the error-free transmission at OOK modulation of 11 Gbit/s on the 100-GHz carrier.