The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] phase unwrapping(6hit)

1-6hit
  • Highly-Accurate and Real-Time Speech Measurement for Laser Doppler Vibrometers

    Yahui WANG  Wenxi ZHANG  Zhou WU  Xinxin KONG  Yongbiao WANG  Hongxin ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2022/06/08
      Vol:
    E105-D No:9
      Page(s):
    1568-1580

    Laser Doppler Vibrometers (LDVs) enable the acquisition of remote speech signals by measuring small-scale vibrations around a target. They are now widely used in the fields of information acquisition and national security. However, in remote speech detection, the coherent measurement signal is subject to environmental noise, making detecting and reconstructing speech signals challenging. To improve the detection distance and speech quality, this paper proposes a highly accurate real-time speech measurement method that can reconstruct speech from noisy coherent signals. First, the I/Q demodulation and arctangent phase discrimination are used to extract the phase transformation caused by the acoustic vibration from coherent signals. Then, an innovative smoothness criterion and a novel phase difference-based dynamic bilateral compensation phase unwrapping algorithm are used to remove any ambiguity caused by the arctangent phase discrimination in the previous step. This important innovation results in the highly accurate detection of phase jumps. After this, a further innovation is used to enhance the reconstructed speech by applying an improved waveform-based linear prediction coding method, together with adaptive spectral subtraction. This removes any impulsive or background noise. The accuracy and performance of the proposed method were validated by conducting extensive simulations and comparisons with existing techniques. The results show that the proposed algorithm can significantly improve the measurement of speech and the quality of reconstructed speech signals. The viability of the method was further assessed by undertaking a physical experiment, where LDV equipment was used to measure speech at a distance of 310m in an outdoor environment. The intelligibility rate for the reconstructed speech exceeded 95%, confirming the effectiveness and superiority of the method for long-distance laser speech measurement.

  • Phase Unwrapping Algorithm Based on Extended Particle Filter for SAR Interferometry

    XianMing XIE  PengDa HUANG  QiuHua LIU  

     
    LETTER-Nonlinear Problems

      Vol:
    E97-A No:1
      Page(s):
    405-408

    This paper presents a new phase unwrapping algorithm, based on an extended particle filter (EPF) for SAR interferometry. This technique is not limited by the nonlinearity of the model, and is able to accurately unwrap noisy interferograms by applying EPF to simultaneously perform noise suppression and phase unwrapping. Results obtained from synthetic and real data validate the effectiveness of the proposed method.

  • Progressive Transform-Based Phase Unwrapping Utilizing a Recursive Structure

    Andriyan Bayu SUKSMONO  Akira HIROSE  

     
    PAPER-Sensing

      Vol:
    E89-B No:3
      Page(s):
    929-936

    We propose a progressive transform-based phase unwrapping (PU) technique that employs a recursive structure. Each stage, which is identical with others in the construction, performs PU by FFT method that yields a solution and a residual phase error as well. The residual phase error is then reprocessed by the following stages. This scheme effectively improves the gradient estimate of the noisy wrapped phase image, which is unrecoverable by conventional global PU methods. Additionally, by incorporating computational strength of the transform PU method in a recursive system, we can realize a progressive PU system for prospective near real-time topographic-mapping radar and near real-time medical imaging system (such as MRI thermometry and MRI flow imager). PU performance of the proposed system and the conventional PU methods are evaluated by comparing their residual error quantitatively with a fringe-density-related error metric called FZX (fringe's zero-crossing) number. Experimental results for simulated and real InSAR phase images show significant, progressive improvement over conventional ones of a single-stage system, which demonstrates the high applicability of the proposed method.

  • A Fractal Estimation Method to Reduce the Distortion in Phase Unwrapping Process

    Andriyan Bayu SUKSMONO  Akira HIROSE  

     
    PAPER-Sensing

      Vol:
    E88-B No:1
      Page(s):
    364-371

    Two-dimensional phase unwrapping (PU) process usually causes a noise-induced distortion in the geographical information of a wrapped phase image obtained by, for example, interferometric synthetic aperture radar (InSAR). This paper presents a novel method to reduce the phase-unwrapping distortion by being based on two-dimensional fractional Brownian motion (fBm) theory. The method incorporates fractal geometry estimation with conventional global-transform PU. For the spatial-frequency spectrum of an observed phase image, we estimate the fractal dimension by assuming an almost constant dimension over the image. Then, according to the estimation, we compensate the distorted spectrum of the tentatively computed global PU result. We obtain a better topographical map as the inverse Fourier transform of the compensated spectrum. It is demonstrated that the proposed method increases the signal-to-noise ratio of PU results for simulated data with various noise levels. Evaluations on an actual InSAR phase image also show that the method significantly improves the quality of the conventional global-transform PU result, in particular in its fine structure.

  • Automatic Phase Unwrapping Algorithms in Synthetic Aperture Radar (SAR) Interferometry

    Jerome J. AKERSON  Yingching Eric YANG  Yoshihisa HARA  Bae-Ian WU  Jin A. KONG  

     
    PAPER-SAR Interferometry and Signal Processing

      Vol:
    E83-C No:12
      Page(s):
    1896-1904

    In Synthetic Aperture Radar Interferometry (InSAR), phase unwrapping holds the key to accurate inversion of digital elevation data. Two new techniques are introduced in this paper that can perform automatic phase unwrapping. The first one is an "optimal" branch-cut algorithm and the second one a hybrid branch-cut/least-square technique, in which pole locations form the weighting basis for the weighted least-square approach. Application of both techniques to ERS-1 data indicates that the height inversion errors are comparable and offer over fifty percent reduction in root mean square (rms) height error compared to the straight least squares method and over thirty-five percent reduction in rms height error compared to the weighted least squares method based on coherence data weighting schemes. The hybrid technique is especially appealing due to its computational efficiency and robustness when compared to traditional branch-cut algorithms.

  • Adaptive Complex-Amplitude Texture Classifier that Deals with Both Height and Reflectance for Interferometric SAR Images

    Andriyan Bayu SUKSMONO  Akira HIROSE  

     
    PAPER-SAR Interferometry and Signal Processing

      Vol:
    E83-C No:12
      Page(s):
    1912-1916

    We propose an adaptive complex-amplitude texture classifier that takes into consideration height as well as reflection statistics of interferometric synthetic aperture radar (SAR) images. The classifier utilizes the phase information to segment the images. The system consists of a two-stage preprocessor and a complex-valued SOFM. The preprocessor extracts a complex-valued feature vectors corresponding to height and reflectance statistics of blocks in the image. The following SOFM generates a set of templates (references) adaptively and classifies a block into one of the classes represented by the templates. Experiment demonstrates that the system segments an interferometric SAR image successfully into a lake, a mountain, and so on. The performance is better than that of a conventional system dealing only with the amplitude information.