Hitoshi NAKAMURA Masato SHISHIKURA Shigehisa TANAKA Yasunobu MATSUOKA Tsunao ONO Takao MIYAZAKI Shinji TSUJI
We propose an InGaAlAs waveguide p-i-n photodiode (WG-PD) with a thick symmetric double-core for surface-hybrid integration onto optical platforms, which can be applied to low cost optical modules for access networks. The waveguide structure is designed to efficiently couple to flat-ended single mode fibers while maintaining low-voltage (less than 2 V) operation. Crystal growth conditions and a passivation technique are also investigated for obtaining high responsivity, low dark current and highly reliable operation. Fiber-coupled responsivity as high as 0.95 A/W, at a 1.3-µm wavelength, and vertical coupling tolerance as wide as 2.6 µm are demonstrated for a dispersion-shifted fiber (DSF) coupling at an operating voltage of 2 V. Dark current is as low as 300 pA at 25 and 12 nA at 100. A temperature accelerated aging test is performed to show the feasibility of using the WG-PD in long-term practical applications.
Shinji TSUJI Ryuta TAKAHASHI Takeshi KATO Fumihiko UCHIDA Satoru KIKUCHI Toshinori HIRATAKA Masato SHISHIKURA Hiroaki OKANO Tsuneo SHIOTA Satoshi AOKI
Precise direct mounting of laser diode (LD) and photodiode (PD) chips on silica planar lightwave circuits (PLCs) has been investigated for application to transceiver modules. To achieve submicron optical alignment, self-aligned index marks on the PLCs and LDs were directly detected by transmission infrared light. The repeatability of the positioning was measured to be within 0.125 µm. The output power of the resultant module was 0.2 mW at 80 mA. A waveguide-type PD was also mounted in the same way, and module sensitivity of 0.25 A/W was demonstrated.
This paper proposes fiber optic link configurations for use in microwave and millimeter-wave transmission Higher frequencies,such as millimeter-waves, are well suited to transmission of broadband signals. Photodiodes can operate simultaneously as optical detectors and microwave frequency mixers thanks to their inherent nonlinearities. This allows us to increase the output radio frequncy. But, this also generates undesired spurious frequencies, necessitating the use of microwave filters. We discuss here two fiber optic link configurations, i.e., balanced/image canceling photodiode mixing links utilizing the combination of microwave functional components and optical devices to suppress the local/image frequency without filters. These configurations are experimentally investigated at microwave frequencies and local/image frequency suppression is successfully demonstrated.
Optical interconnection is a rapidly expanding field of optical signal transmission, but it places some stringent requirements on optical devices. This paper introduces the current device characteristics of lasers and photodiodes and discusses the possibility of intra/inter wafer optical interconnection.
Masashi HASHIMOTO Yukio FUKUDA Shigeki ISHIBASHI Ken-ichi KITAYAMA
The newly developed GaAs-pin/SLM, that is structured with a GaAs-pin diode photodetector and a ferroelectric liquid crystal as the light phase modulator, shows the accumulative thresholding characteristic against the optical energy of the write-in pulse train. We experimentally investigate this characteristic and discuss its applications to optical parallel processings.