The search functionality is under construction.

Keyword Search Result

[Keyword] pilot symbol(20hit)

1-20hit
  • IQ Imbalance Estimation Scheme in the Presence of DC Offset and Frequency Offset in the Frequency Domain

    Mamiko INAMORI  Shuzo TAKAYAMA  Yukitoshi SANADA  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2688-2696

    Direct conversion receivers in orthogonal frequency division multiplexing (OFDM) systems suffer from direct current (DC) offset, frequency offset, and IQ imbalance. We have proposed an IQ imbalance estimation scheme in the presence of DC offset and frequency offset, which uses preamble signals in the time domain. In this scheme, the DC offset is eliminated by a differential filter. However, the accuracy of IQ imbalance estimation is deteriorated when the frequency offset is small. To overcome this problem, a new IQ imbalance estimation scheme in the frequency domain with the differential filter has been proposed in this paper. The IQ imbalance is estimated with pilot subcarriers. Numerical results obtained through computer simulation show that estimation accuracy and bit error rate (BER) performance can be improved even if the frequency offset is small.

  • An Efficient AOA Estimation Scheme Based on Cyclic Pilot Symbols for Positioning of Mobile Objects in Indoor Environments

    Sekchin CHANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:3
      Page(s):
    943-946

    The conventional AOA estimation schemes assume multiple antennas, which usually causes high-cost estimation systems. Moreover, the schemes are very vulnerable to multi-path interferences. In this letter, a novel scheme is proposed for the efficient AOA estimation. The scheme is based on cyclic pilot symbols, which guarantees the use of a single antenna and the robustness over multi-path interferences.

  • GI-Based Estimation of Integer Carrier Offset for Multicarrier Transmission Systems

    Eu-Suk SHIM  Hyoung-Kyu SONG  Young-Hwan YOU  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E89-B No:12
      Page(s):
    3430-3432

    In this letter, we focus on non-pilot-symbol assisted integer frequency offset estimation for multicarrier orthogonal frequency division multiplexing (OFDM) systems. We introduce a frequency offset estimator that is based on the guard interval (GI) present in OFDM signals. We show by simulation that the frequency offset estimator can accurately estimate the frequency misalignment at the sacrifice of limited estimation range.

  • Estimation of OFDM Integer Frequency Offset over Rapidly Time-Varying Channels

    Young-Hwan YOU  Sung-Jin KANG  Dae-Ki HONG  Jang-Yeon LEE  Jin-Woong CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:7
      Page(s):
    2099-2101

    In this letter, we present a simple way of estimating the integer frequency offset of orthogonal frequency division multiplexing (OFDM) system over a rapidly time-varying channel. By utilizing the channel responses of neighboring subcarriers within one pilot symbol, the frequency offset estimator is derived. We show by simulation that the proposed estimator can accurately estimate the integer frequency offset with reduced computational burden.

  • Optimal Pilot Placement for Semi-Blind Channel Tracking of Packetized Transmission over Time-Varying Channels

    Min DONG  Srihari ADIREDDY  Lang TONG  

     
    INVITED PAPER-Convolutive Systems

      Vol:
    E86-A No:3
      Page(s):
    550-563

    The problem of optimal placement of pilot symbols is considered for single carrier packet-based transmission over time varying channels. Both flat and frequency-selective fading channels are considered, and the time variation of the channel is modeled by Gauss-Markov process. The semi-blind linear minimum mean-square error (LMMSE) channel estimation is used. Two different performance criteria, namely the maximum mean square error (MSE) of the channel tap state over a packet and the cumulative channel MSE over a packet, are used to compare different placement schemes. The pilot symbols are assumed to be placed in clusters of length (2L+1) where L is the channel order, and only one non-zero training symbols is placed at the center of each cluster. It is shown that, at high SNR, either performance metric is minimized by distributing the pilot clusters throughout the packet periodically. It is shown that at low SNR, the placement is in fact not optimal. Finally, the performance under the periodic placement is compared with that obtained with superimposed pilots.

  • Comparative Study of Iterative Channel Estimation Schemes for Turbo Decoding with Antenna Diversity Reception in Rayleigh Fading

    Ryohei KIMURA  Deepshikha GARG  Fumiyuki ADACHI  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:3
      Page(s):
    1149-1152

    Turbo decoding with coherent detection requires accurate channel estimation. In this paper, we consider outer-turbo channel estimation (OTCE), which carries out iterative channel estimation before turbo decoding, and inner-turbo channel estimation (ITCE), which incorporates iterative channel estimation into turbo decoding process. The average bit error rate (BER) performances with OTCE and ITCE in a frequency nonselective Rayleigh fading channel with antenna diversity reception are evaluated by means of computer simulations to be compared. It is found that although ITCE is superior to OTCE, OTCE provides the average BER performance very close to ITCE when dual antenna diversity reception is used.

  • Adaptive Prediction Iterative Channel Estimation for Combined Antenna Diversity and Coherent Rake Reception of Multipath-Faded DSSS Signals

    Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E85-B No:11
      Page(s):
    2405-2415

    Adaptive prediction iterative channel estimation is presented for combined antenna diversity and coherent rake reception of direct sequence spread spectrum (DSSS) signals. Its first stage uses pilot-aided adaptive prediction channel estimation, while the succeeding iteration stages use decision feedback and moving average filtering for channel re-estimation. The bit error rate (BER) performance of DSSS signal computer simulations evaluate transmission in a frequency selective Rayleigh fading channel. It is found that the adaptive prediction iterative channel estimation is superior to the non adaptive iterative channel estimation using the conventional weighted multi-slot averaging (WMSA) filtering at the first iteration stage, particularly in a fast fading channel.

  • Pilot-Aided Adaptive Prediction Channel Estimation in a Frequency-Nonselective Fading Channel

    Shinsuke TAKAOKA  Fumiyuki ADACHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E85-B No:8
      Page(s):
    1552-1560

    Pilot-aided adaptive prediction channel estimation is proposed for coherent detection in a frequency-nonselective fading channel. It is an extension of the conventional weighted multi-slot averaging (WMSA) channel estimation and consists of 3 steps. A block of Np pilot symbols is periodically transmitted, each pilot block being followed by Nd data symbols to form a data slot. In the first step, the instantaneous channel gain is estimated by coherent addition of Np pilot symbols. Using the K past and K future estimated instantaneous channel gains, the second step predicts the instantaneous channel gains at the end and beginning of data slot of interest by a forward predictor and a backward predictor, respectively. The tap-weights of forward prediction and backward prediction are adaptively updated using the normalized least mean square (NLMS) algorithm. Finally, in the third step, the instantaneous channel gain at each data symbol position within the data slot of interest is estimated by simple averaging or linear interpolation using the two adaptively predicted instantaneous channel gains. The computer simulation confirms that the proposed adaptive prediction channel estimation achieves better bit error rate (BER) performance than the conventional WMSA channel estimation in a fast fading channel and/or in the presence of frequency offset between a transmitter and a receiver.

  • A Pilot-Symbol-Assisted Fading and Frequency-Offset Compensation Method Using FFT

    Eiji OKAMOTO  Huan-Bang LI  Tetsushi IKEGAMI  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1656-1664

    Methods that precisely compensate for propagation distortion using pilot symbols are widely used in mobile communications. We describe such a pilot-symbol-assisted technique for precise compensation of flat fading and frequency offset. This technique provides a wide range of offset compensation. Conventional methods using fast Fourier transform (FFT) compensate for both slow and fast fading, but their tolerable range of frequency offset is very limited. By composing a system with an approximate frequency estimator, we can estimate and compensate for fading and a large frequency offset at the same time. The estimation and compensation are carried out by periodic pilot symbols and no other index sequences are needed. This method enables high-data-rate transmission. We describe the method and provide a theoretical analysis for the compensable range of fading and frequency offset for a transmission frame structure with pilot symbols. Then, we evaluate the method by computer simulation.

  • Two-Dimensional Pilot-Symbol-Aided Channel Estimation for OFDM Systems with Transmitter Diversity

    Won Gi JEON  Kyung Hyun PAIK  Yong Soo CHO  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:4
      Page(s):
    840-844

    In this letter, a two-dimensional pilot-symbol aided (2-D PSA) channel estimation technique for coherent orthogonal frequency-division multiplexing (OFDM) systems with transmitter diversity is proposed. The 2-D PSA channel estimator and the corresponding orthogonality condition between the sets of pilot symbols are derived under minimum mean-square error (MMSE) criterion for OFDM systems with transmitter diversity. The proposed estimator is shown to be accurate and effective for tracking variations of channels between multiple transmitter antennas and receiver antennas.

  • Performance Analysis of Pilot Symbol Arrangement for OFDM System under Time-Varying Multi-Path Rayleigh Fading Channels

    Seung Young PARK  Chung Gu KANG  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E84-B No:1
      Page(s):
    36-45

    In this paper, we investigate the performance of the orthogonal frequency division multiplexing (OFDM) system based on a configuration of pilot symbol arrangement under a time-varying fading channel and verify it by simulation. A particular channel of concern is modeled by a wide-sense stationary uncorrelated scattering (WSSUS) Rayleigh fading process and furthermore, the inter-carrier interference (ICI) caused by the fading process is assumed to be Gaussian noise. The current analysis focuses on the performance limit of the pilot symbol-assisted channel estimation, in which a minimum mean squared error (MMSE) channel estimator is employed to exploit both time- and frequency-domain correlation simultaneously. In particular, the optimum pilot symbol arrangement was investigated for the time-varying fading channel, which has been rarely addressed with any analytical approach in previous research. Although the proposed channel estimation scheme is subject to the intensive processing complexity in the receiver, it has been shown that the better BER performance can be achieved as compared with that of the differential detection scheme and the error floor can be removed.

  • An Improved Pilot Symbol Assisted Coherent Detection Scheme for Rician Fading Channels

    Takashi ASAHARA  Toshiharu KOJIMA  Makoto MIYAKE  

     
    PAPER

      Vol:
    E82-B No:12
      Page(s):
    2041-2048

    This paper proposes a coherent detection scheme that can reduce the estimation errors of the carrier phase due to Gaussian noise in communication systems where pilot symbol assisted modulation is employed to compensate for Rician fading distortion. This paper introduces two functions in addition to conventional fading estimation methods using Wiener interpolation, etc. The first is the weighted average function for reducing the estimation errors of the fading distortion detected by pilot symbols. The second is the moving average function for estimating the phase errors that are residual after being compensated for by the estimated fading distortion. This paper evaluates the bit error rate (BER) performance for the proposed method in both Rician fading channel and additive white Gaussian noise (AWGN) channel by computer simulation. Simulation results verify that the BER performance of the proposed method is superior to that of a conventional method in both Rician fading channel and AWGN channel. Simulation results also confirm that the degradation of the BER performance of the proposed method is only 0.1 dB in AWGN channel and only 0.3 dB in Rician fading channel compared with the theoretical curves even if we reduce the number of computations by simplifying the calculation of interpolation coefficients optimized for Wiener interpolation.

  • Improvement of Extended Symbol-Aided Estimation for Rayleigh Fading Channels

    Kazunari GENKO  Le-Hai NAM  Kohichi SAKANIWA  

     
    PAPER-Spread Spectrum System

      Vol:
    E81-A No:10
      Page(s):
    2073-2082

    In this paper we present improved techniques for transmitting M-PSK signals in mobile radio environments. Conventionally an optimal linear combination of the observable fading at the pilot symbols has been used as estimations of all other fading. Recently, an improved technique was proposed by the authors which employs not only the pilot symbols but also the previously estimated fading values on data symbols to extract more information on fading channels. In this paper we present new methods by further improving the above method invented by the authors. The present methods utilize, instead of the estimated fading values on data symbols, the demodulator output normalized by the decided (decoded) data symbols to estimate the fading values in the current frame. We also show by computer simulations for BPSK system that the proposed estimation methods provide better performance than those of the conventional methods.

  • An Analysis of a 16QAM System Using Extended Symbol-Aided Estimation under Rician Fading Channels

    Le-Hai NAM  Kohichi SAKANIWA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E81-A No:6
      Page(s):
    1276-1283

    This paper presents a technique to transmit 16QAM signals in mobile radio environments by using extended symbol-aided estimation (ESAE) method for compensating the multipath fading effect. The main results of this paper are the symbol error rate (SER) performance analyses for BPSK and 16QAM systems using the proposed estimation method under Rician fading. The analytical results demonstrate better performance of the proposed systems compared with those of the conventional systems under fast and severe fading, especially in the region of high signal to noise ratio.

  • Interference Rejection Weight Control for Pilot Symbol-Assisted Coherent Multistage Interference Canceller Using Recursive Channel Estimation in DS-CDMA Mobile Radio

    Mamoru SAWAHASHI  Hidehiro ANDOH  Kenichi HIGUCHI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E81-A No:5
      Page(s):
    957-972

    To further increase the capacity of the DS-CDMA reverse-link, this paper investigates the effectiveness of interference rejection weight control (IRWC) for the pilot symbol-assisted coherent multistage interference canceller (PSA-COMSIC) using recursive channel estimation (RCE). First, a bit error rate (BER) expression of the serial (successive) and parallel type hard decision multistage interference canceller (MSIC) with IRWC using Gaussian approximation for multiple access interference (MAI) are presented for no fading channels. It is theoretically shown that IRWC is effective in mitigating the interference replica generation error in hard decision MSIC. Next, the BER performance of PSA-COMSIC using IRWC in a multipath Rayleigh fading channel when channel coding is applied is evaluated by computer simulations. The BER performance and capacity are evaluated not only for the conventional serial and parallel types but also for serial/parallel (S/P) hybrid type and non-linear/linear (N/L) hybrid type schemes, both of which are effective in significantly reducing the demodulation processing delay. The simulation results demonstrate that, in interference-limited channels where the back ground noise is negligible, the capacity of serial type PSA-COMSIC using IRWC is about 10% higher than that without IRWC. It is also found that if we can accept a slight capacity degradation compared to the serial type PSA-COMSIC, S/P hybrid schemes are effective in reducing the demodulation processing delay.

  • Performance of Pilot Symbol-Assisted Coherent Orthogonal Filter Based Rake Receiver Using Fast Transmit Power Control for DS-CDMA Mobile Radio

    Hidehiro ANDOH  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E80-A No:12
      Page(s):
    2455-2463

    The bit error rate (BER) performance against average Eb/No (signal energy per bit-to-noise power spectral density ratio) and the capacity of the pilot symbol-assisted coherent orthogonal filter (PSA-COF) based Rake receiver with fast transmit power control (TPC) are evaluated in DS-CDMA reverse link under multipath Rayleigh fading. Fast TPC, which controls all signals transmitted from users in the same cell or sector such that they are received with equal power at the cell site under fast Rayleigh fading, is essential for the PSA-COF based Rake receiver in the reverse link in order to improve the performance degradation experienced when the received signal level drops due to fading as the transmit power is limited in practical systems. Signal-to interference plus noise power ratio (SINR) based fast transmit power control (TPC) is assumed here. By using the fast TPC in reverse link and applying the PSA-COF based Rake receiver to base station (BS), the transmit power of each mobile station (MS) can be significantly reduced, thus increasing link capacity. It is demonstrated that the capacity of the PSA-COF based Rake receiver is about 1.5 times higher than that of the conventional matched filter (MF) receiver in interference-limited channels.

  • Extended Symbol-Aided Estimation for Non-selective Rayleigh Fading Channels

    Le-Hai NAM  Kohichi SAKANIWA  

     
    PAPER-Communications/Coded Modulation/Spread Spectrum

      Vol:
    E80-A No:11
      Page(s):
    2144-2154

    In this paper the conventional symbol-aided estimation methods are extended to use not only the known pilot symbols but also the previously estimated fading values to extract more information on fading channels. The proposed estimation method is evaluated using theoretical analyses. Recursive formulae are derived for calculating the mean square estimation errors, which are then used to calculate the BER performance of a BPSK system employing the proposed fading estimation method. The results show strong BER performance of the proposed system in the region of high signal to noise ratio under fast fading compared to that of the conventional system. Moreover, the proposed system still sustains its performance under mismatched conditions, where the conventional system degrades exhibiting error floors. Finally the theoretical results are verified by using computer simulations.

  • Experiments on Coherent Multicode DS-CDMA

    Tomohiro DOHI  Yukihiko OKUMURA  Akihiro HIGASHI  Koji OHNO  Fumiyuki ADACHI  

     
    PAPER-CDMA and multiple access technologies

      Vol:
    E79-B No:9
      Page(s):
    1326-1332

    Direct sequence code division multiple access (DS-CDMA) is a promising candidate for 3rd generation mobile communications systems. We recently proposed a coherent multicode DS-CDMA (CM-CDMA) scheme that uses pilot symbol-aided coherent RAKE, interference power measurement based transmit power control, orthogonal multicode transmission, and concatenated channel coding. We have implemented a CM-CDMA test-bed for a series of laboratory and field tests using the 2 GHz band. This paper describes the test-bed system and experimental results are presented. It is confirmed that pilot symbol-aided coherent RAKE can reduce the required signal energy per bit-to-interference plus background noise spectrum density ratio (Eb/Io) by 2-3 dB from that achievable with differential detection. Also shown is that by using both RAKE combining and SIR-based power control the transmit power of mobile stations can be significantly reduced. Measurement results show that the required Eb/Io degrades only slightly when 24 code-channels (768 kbps) are used since orthogonal Gold sequences are used as short spreading codes.

  • Pilot Symbol-Assisted Coherent Multistage Interference Canceller Using Recursive Channel Estimation for DS-CDMA Mobile Radio

    Mamoru SAWAHASHI  Yoshinori MIKI  Hidehiro ANDOH  Kenichi HIGUCHI  

     
    PAPER-Modulation, Equalization and interference cancellation technologies

      Vol:
    E79-B No:9
      Page(s):
    1262-1270

    A pilot symbol-assisted coherent multistage interference canceller (PSA-COMSIC) using recursive channel estimation is proposed for DS-CDMA mobile radio cellular systems. In the proposed scheme, since the channel variation due to fading is recursively estimated at each interference canceling stage, the accuracy of channel estimation is successively improved. The bit error rate (BER) performances against average Eb/N0 (signal energy per bit-to-noise power spectral density ratio) and capacity in the isolated cell are investigated by computer simulations. The simulations demonstrate that the capacity using the PSA-COMSIC with recursive channel estimation is about 1.6 times higher than that of the conventional matched filter receiver with channel coding and bit-interleaving in the interference-limited environments.

  • A Frequency and Timing Period Acquisition Technique for OFDM Systems

    Hiroshi NOGAMI  Toshiro NAGASHIMA  

     
    PAPER-Radio Communication

      Vol:
    E79-B No:8
      Page(s):
    1135-1146

    Orthogonal frequency division multiplexing (OFDM) has been receiving a lot of attention in the field of broadcasting because of its ruggedness under multipath environments. One of important issues to realize high quality reception of OFDM signals is to correct frequency and timing offsets between the transmitter and receiver so that orthogonality of the carriers can be maintained. This paper discusses a frequency and timing period acquisition technique for OFDM systems. A new offset estimation technique is introduced that detects both the frequency and timing peirod offsets at the same time by using only one pilot symbol with its suitable frequency assignment. A pseudo noise (PN) sequence is also introduced to assign these frequencies of the pilot symbol so that the frequency acquisition range can be widened. Numerical examples are given to show the estimate variances of the proposed frequency and timing period estimator over both additive white Gaussian noise (AWGN) and multipath fading channels. Also the bit error rate (BER) performance for an open loop acquisition system is examined.