1-7hit |
This paper reviews our recent progress on arrayed waveguide gratings (AWGs) using super-high-Δ silica-based planar lightwave circuit (PLC) technology and their application to integrated optical devices. Factors affecting the chip size of AWGs and the impact of increasing relative index difference Δ on the chip size are investigated, and the fabrication result of a compact athermal AWG using 2.5%-Δ silica-based waveguides is presented. As an application of super-high-Δ AWGs to integrated devices, a flat-passband multi/demultiplexer consisting of an AWG and cascaded MZIs is presented.
Akimasa KANEKO Akio SUGITA Katsunari OKAMOTO
We have reviewed recent progress on arrayed waveguide gratings for DWDM applications. AWGs can be used to realize not only mux/demux filters with various channel spacings, but also highly integrated optical components.
Katsunari OKAMOTO Yasuyuki INOUE Takuya TANAKA Yasuji OHMORI
Planar lightwave circuits (PLCs) provide various important devices for optical wavelength division multiplexing (WDM) systems, subscriber networks and etc. This paper reviews the recent progress and future prospects of PLC technologies including arrayed-waveguide grating multiplexers, optical add/drop multiplexers, programmable dispersion equalizers and hybrid optoelectronics integration technologies.
Hisato UETSUKA Hideaki ARAI Korenori TAMURA Hiroaki OKANO Ryouji SUZUKI Seiichi KASHIMURA
High- and low-reflection Bragg gratings with a flat-top spectral response free from ripples are proposed. Add/drop filters are created based on gratings photoinduced on planar waveguides by using the new design schemes. The measured spectral responses for the high and low reflection gratings are in good agreement with the calculated ones, and show the flat-top spectral responses.
Hisato UETSUKA Kenji AKIBA Kenichi MOROSAWA Hiroaki OKANO Satoshi TAKASUGI Kimio INABA
Recently, a wavelength division multi/demultiplexing system has been viewed with keen interest because it is possible to increase the transmission capacity and system flexibility. An arrayed waveguide grating (AWG) type of Multi/demultiplexer which is one of the key components to realize such a system has been developed by using Planar Lightwave Circuits (PLCs). Newly designed optical circuits have been incorporated into the AWG to control the center wavelength and to expand the pass band width. The 3 dB pass band width is 1.4 times that of a conventional AWG. It is confirmed that the newly developed AWG has low polarization dependence, low temperature dependence and high reliability.
Hisato UETSUKA Tomoyuki HAKUTA Hiroaki OKANO Noriaki TAKETANI Tatsuo TERAOKA
An insertion loss, branching deviation and polarization dependent loss (PDL) as to a 2 N optical splitter using silica-based planar lightwave circuits has been investigated. New key technologies such as (1) a novel wedge type Y-branch, (2) an offset waveguide at the junction between the curved input waveguide and the Y-branch, and (3) low birefringence waveguides due to the appropriate dopant concentration of a cladding, have been devised and incorporated into the splitter. As a result, 2 N optical splitters with low average insertion loss ( 13.2 dB), low branching deviation ( 0.4 dB) and low PDL ( 0.2 dB) have been successfully developed.
Masayuki OKUNO Akio SUGITA Tohru MATSUNAGA Masao KAWACHI Yasuji OHMORI Katsumi KATOH
A strictly nonblocking 88 matrix switch was designed and fabricated using silica-based planar lightwave circuits (PLC) on a silicon substrate. The average insertion loss was 11 dB in the TE mode and 11.3 dB in the TM mode. The average switch element extinction ratio was 16.7 dB in the TE mode and 17.7 dB in the TM mode. The accumulated crosstalk was estimated to be 7.4 dB in the TE mode and 7.6 dB in the TM mode. The driving power of the phase shifter required for switching was about 0.5 W and the polarization dependence of the switching power was 4%. The switching response time was 1.3 msec. The wavelength range with a switch extinction ratio of over 15 dB was 1.31 µm30 nm.