1-10hit |
Ryosuke OZAKI Tomohiro KAGAWA Tsuneki YAMASAKI
In this paper, we analyzed the pulse responses of dispersion medium with periodically conducting strips by using a fast inversion Laplace transform (FILT) method combined with point matching method (PMM) for both the TM and TE cases. Specifically, we investigated the influence of the width and number of the conducting strips on the pulse response and distribution of the electric field.
We have proposed a new method for the scattering of electromagnetic waves by inhomogeneous dielectric gratings loaded with parallel perfectly conducting strips using the combination of improved Fourier series expansion method and point matching method. Numerical results aregiven for the transmission and scattering characteristics for TE and TM cases.
Shinichiro OHNUKI Kenichiro KOBAYASHI Seiya KISHIMOTO Tsuneki YAMASAKI
Electromagnetic scattering problems of canonical 2D structures can be analyzed with a high degree of accuracy by using the point matching method with mode expansion. In this paper, we will extend our previous method to 3D electromagnetic scattering problems and investigate the radar cross section of spherical shells and the computational accuracy.
Shinichiro OHNUKI Takahisa MOCHIZUKI Kenichiro KOBAYASHI Tsuneki YAMASAKI
We introduce a novel method to optimize field decomposition for a mode matching technique. Using our method, expanded mode numbers can be minimized to achieve the desired digits of computational accuracy.
Shinichiro OHNUKI Ryuichi OHSAWA Tsuneki YAMASAKI
Radar cross sections of polygonal cylinders are investigated by using a kind of mode matching methods. Applying two types of novel field-decomposition techniques, electromagnetic scattering analysis can be performed very precisely. We will discuss computational accuracy of our proposed method and the proper choice of field-decomposition techniques for a rectangular cylinder with various shapes of wedge cavities and bumps.
Tohru IWAI Kennichi HATAKEYAMA
We calculated the shielding characteristic of a three-dimensional array of strip conductors by using the electric field integral equation method and its expansion to an array structure. From reflection coefficients, the effective permittivity of the array is calculated. The effective permittivity becomes negative in the frequency range above resonance, in which the electromagnetic waves travel through the material in an evanescent mode and the transmission coefficient becomes very small.
Yoshiro TOMABECHI Yoshinori KOGAMI Mari MATSUBARA Kazuhito MATSUMURA
Using a point matching method, we have numerically analyzed resonance frequencies and unloaded Q factor of whispering gallery modes in a millimeter wave region that are well known as an intrinsic mode of a dielectric disk resonator. We express field distributions of the resonance modes by a summation of spherical waves. Tangential electromagnetic fields inside the disk are matched to those outside the disk at appropriate matching points on a boundary. As the result, a 4N 4N (N; number of matching points) determinant is derived as an eigenvalue equation of the disk resonator. Since elements of the determinant are complex numbers, a complex angular frequency is introduced to make a value of the determinant zero. For a location of the matching points, we also introduce a new technique which is derived from a field expression of the whispering gallery modes. Since an azimuthal angle dependence of the field distributions with a resonance mode number m is presented by the associated Legendre function Pnm(cos θ), we define abscissas θi of the matching points as solutions of Pm+2N-1m (cos θ) = 0. Considering the field symmetry, we also modify the eigenvalue equation to a new eigenvalue equation which is expressed (4N - 2) (4N - 2) determinant. From the results of our numerical analysis, we can find that the resonance frequencies and unloaded Q factor well converge for number of matching points N. A comparison of numerical results and experimental ones, in a millimeter wave band (50 - 100 GHz), shows a good agreement with each other. It is found that our analysis is effective for practical use in the same wave band.
Shinichiro OHNUKI Takashi HINATA
This paper shows an analysis of electromagnetic scattering from an open-ended rectangular cylinder for a plane wave incidence. The internal region is separated into two areas by additional plates to investigate the cavity resonance in detail. The applied numerical technique is the point matching method taking account of the edge condition. As numerical examples, the radar cross section is presented for E - polarized case and H - polarized case. Physical meanings of the computational results are discussed with a view to the contribution of the iris.
Takashi HINATA Hiroyuki HOSONO Hidenao ONO
The scattering problem of a plane wave by an axially slotted conducting elliptic cylinder in homogeneous medium is investigated. We present an accurate analysis using the modified point matching method, which can reduce the order of the simultaneous equations to be solved at least by a half under the condition of the same accuracy as compared with an usual point matching method. The accuracy of our results is checked by evaluating the relative errors. Numerical results are given for scattered field patterns by a conducting elliptic cylinder with a slot aperture of angle width 120 when the angle of incidence θinO.
Shinichiro OHNUKI Tsuneki YAMASAKI Takashi HINATA
The transient scattering of a half sine pulse wave by a conducting rectangular cylinder with an open sidewall is rigorously analyzed by using the point matching method (taking into account the edge condition exactly) combined with the fast inversion of Laplace transform. Numerical results are presented for back scattered and forward scattered responses of the far fields when a half sine pulse is incident on the open side and the closed side of the cylinder. The physical meaning of the transient responses is discussed in detail. The comparison of the responses with those by a perfect conducting rectangular cylinder is presented.