1-3hit |
Cesar CARRIZO Kentaro KOBAYASHI Hiraku OKADA Masaaki KATAYAMA
This manuscript presents a simple scheme to improve the performance of a feedback control system that uses power line channels for its feedback loop. The noise and attenuation of power lines, and thus the signal to noise ratio, are known to be cyclostationary. Such cyclic features in the channel allow us to predict virtually error free transmission instants as well as instants of high probability of errors. This paper introduces and evaluates the effectiveness of a packet transmission scheduling that collaborates with a predictive control scheme adapted to this cyclostationary environment. In other words, we explore the cooperation between the physical and application layers of the system in order to achieve an overall optimization. To rate the control quality of the system we evaluate its stability as well as its ability to follow control commands accurately. We compare a scheme of increased packet rate against our proposed scheme which emulates a high packet rate with the use of predictive control. Through this comparison, we verify the effectiveness of the proposed scheme to improve the control quality of the system, even under low signal to noise ratio conditions in the cyclostationary channel.
Adriano MUNIZ Kazuya TSUKAMOTO Masato TSURU Yuji OIE
With the approval of IEEE 1901 standard for power line communications (PLC) and the recent Internet-enable home appliances like the IPTV having access to a content-on-demand service through the Internet as AcTVila in Japan, there is no doubt that PLC has taken a great step forward to emerge as the preeminent in-home-network technology. However, existing schemes developed so far have not considered the PLC network connected to an unstable Internet environment (i.e. more realistic situation). In this paper, we investigate the communication performance from the end-user's perspective in networks with large and variable round-trip time (RTT) and with the existence of cross-traffic. Then, we address the problem of unfair bandwidth allocation when multiple and different types of flows coexist and propose a TCP rate control considering the difference in terms of end-to-end delay to solve it. We validate our methodology through simulations, and show that it effectively deals with the throughput unfairness problem under critical communication environment, where multiple flows with different RTTs share the PLC and cross-traffic exists on the path of the Internet.
Cesar CARRIZO Kentaro KOBAYASHI Hiraku OKADA Masaaki KATAYAMA
This paper discusses a control system that employs a power line to transfer signals to control the motion of a single machine, and explores the influence of packet losses on the quality of the control. As an example of a controlled system, a controller with a rotary inverted pendulum as a controlled object, is considered. The feedback loop in between is the power line. The control performance is evaluated in the power line cyclostationary noise environment and compared against the performance in a stationary noise environment. As a result, it is confirmed that the power line and its cyclostationary noise features present an advantage against transmission in a channel with stationary noise.