The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] probability(432hit)

121-140hit(432hit)

  • Opportunistic Feedback and User Selection for Multiuser Two-Way Amplify-and-Forward Relay in Time-Varying Channels

    Yong-Up JANG  Eui-Rim JEONG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:10
      Page(s):
    2661-2667

    This paper proposes an opportunistic feedback and user selection method for a multiuser two-way relay channel (MU-TWRC) in a time-varying environments where a base station (BS) and a selected mobile station (MS), one of K moving MSs, exchange messages during two time slots via an amplify-and-forward relay station. Specifically, under the assumption of perfect channel reciprocity, we analyze the outage probabilities of several channel feedback scenarios, including the proposed scheme. Based on the analysis, the transmission rates are optimized and the optimal user selection method is proposed to maximize the expected sum throughput. The simulation results indicate that, with opportunistic feedback, the performance can be significantly improved compared to that without feedback. Moreover, the performance is nearly identical to that with full feedback, and close to the case of perfect channel state information at BS for low mobility MSs.

  • Dynamic Fault Tree Analysis for Systems with Nonexponential Failure Components

    Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E96-A No:8
      Page(s):
    1730-1736

    A method of calculating the top event probability of a fault tree, where dynamic gates and repeated events are included and the occurrences of basic events follow nonexponential distributions, is proposed. The method is on the basis of the Bayesian network formulation for a DFT proposed by Yuge and Yanagi [1]. The formulation had a difficulty in calculating a sequence probability if components have nonexponential failure distributions. We propose an alternative method to obtain the sequence probability in this paper. First, a method in the case of the Erlang distribution is discussed. Then, Tijms's fitting procedure is applied to deal with a general distribution. The procedure gives a mixture of two Erlang distributions as an approximate distribution for a general distribution given the mean and standard deviation. A numerical example shows that our method works well for complex systems.

  • Selecting Effective and Discriminative Spatio-Temporal Interest Points for Recognizing Human Action

    Hongbo ZHANG  Shaozi LI  Songzhi SU  Shu-Yuan CHEN  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E96-D No:8
      Page(s):
    1783-1792

    Many successful methods for recognizing human action are spatio-temporal interest point (STIP) based methods. Given a test video sequence, for a matching-based method using a voting mechanism, each test STIP casts a vote for each action class based on its mutual information with respect to the respective class, which is measured in terms of class likelihood probability. Therefore, two issues should be addressed to improve the accuracy of action recognition. First, effective STIPs in the training set must be selected as references for accurately estimating probability. Second, discriminative STIPs in the test set must be selected for voting. This work uses ε-nearest neighbors as effective STIPs for estimating the class probability and uses a variance filter for selecting discriminative STIPs. Experimental results verify that the proposed method is more accurate than existing action recognition methods.

  • Outage Performance for Antenna Selection in AF Two-Way Relaying System with Channel Estimation Error

    Zhangjun FAN  Daoxing GUO  Bangning ZHANG  Youyun XU  

     
    LETTER-Information Network

      Vol:
    E96-D No:7
      Page(s):
    1552-1556

    This letter investigates the outage performance of a joint transmit and receive antenna selection scheme in an amplify-and-forward two-way relaying system with channel estimation error. A closed-form approximate outage probability expression is derived, based on which the asymptotic outage probability expression is derived to get an insight on system's outage performance at high signal-to-noise (SNR) region. Monte Carlo simulation results are presented to verify the analytical results.

  • Node Pair Selection Schemes Using Interference Alignment in MIMO Interference Channel with Cooperation

    Myeong-Jin KIM  Hyun-Ho LEE  Young-Chai KO  Taehyun JEON  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:6
      Page(s):
    1502-1510

    In this paper, we propose four different strategies of node pair selection in multiple input multiple output (MIMO) interference channel where interference alignment (IA) is considered as a transceiver design method. In the first scheme, we consider the maximization of the sum rate by selecting node pairs in a brute force way. We also propose a sub-optimal sum rate maximization scheme with lower complexity than the first scheme. In the third scheme, we aim to minimize the number of links among pairs which incurs the outage in MIMO interference channel. In the fourth scheme, we suggest a max-min node pair selection scheme to enhance both the sum rate and the outage probability. Simulation results demonstrate that all our proposed node pair selection schemes can increase the sum rate but also while also reducing the outage probability compared to the scheme with random node pair selection.

  • An Object Based Cooperative Spectrum Sensing Scheme with Best Relay

    Meiling LI  Anhong WANG  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E96-A No:6
      Page(s):
    1492-1495

    The performance of cooperative spectrum sensing (CSS) is limited not only by the imperfect sensing channels but also by the imperfect reporting channels. In order to improve the transmission reliability of the reporting channels, an object based cooperative spectrum sensing scheme with best relay (Pe-BRCS) is proposed, in which the best relay is selected by minimizing the total reporting error probability to improve the sensing performance. Numerical results show that, the reduced total reporting error probability and the improved sensing performance can be achieved by the Pe-BRCS scheme.

  • Dynamic Fault Tree Analysis Using Bayesian Networks and Sequence Probabilities

    Tetsushi YUGE  Shigeru YANAGI  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E96-A No:5
      Page(s):
    953-962

    A method of calculating the exact top event probability of a fault tree with dynamic gates and repeated basic events is proposed. The top event probability of such a dynamic fault tree is obtained by converting the tree into an equivalent Markov model. However, the Markov-based method is not realistic for a complex system model because the number of states that should be considered in the Markov analysis increases explosively as the number of basic events in the model increases. To overcome this shortcoming, we propose an alternative method in this paper. It is a hybrid of a Bayesian network (BN) and an algebraic technique. First, modularization is applied to a dynamic fault tree. The detected modules are classified into two types: one satisfies the parental Markov condition and the other does not. The module without the parental Markov condition is replaced with an equivalent single event. The occurrence probability of this event is obtained as the sum of disjoint sequence probabilities. After the contraction of modules without parent Markov condition, the BN algorithm is applied to the dynamic fault tree. The conditional probability tables for dynamic gates are presented. The BN is a standard one and has hierarchical and modular features. Numerical example shows that our method works well for complex systems.

  • Link Analysis Based on Rhetorical Relations for Multi-Document Summarization

    Nik Adilah Hanin BINTI ZAHRI  Fumiyo FUKUMOTO  Suguru MATSUYOSHI  

     
    PAPER-Natural Language Processing

      Vol:
    E96-D No:5
      Page(s):
    1182-1191

    This paper presents link analysis based on rhetorical relations with the aim of performing extractive summarization for multiple documents. We first extracted sentences with salient terms from individual document using statistical model. We then ranked the extracted sentences by measuring their relative importance according to their connectivity among the sentences in the document set using PageRank based on the rhetorical relations. The rhetorical relations were examined beforehand to determine which relations are crucial to this task, and the relations among sentences from documents were automatically identified by SVMs. We used the relations to emphasize important sentences during sentence ranking by PageRank and eliminate redundancy from the summary candidates. Our framework omits fully annotated sentences by humans and the evaluation results show that the combination of PageRank along with rhetorical relations does help to improve the quality of extractive summarization.

  • Collision Probability in an In-Line Equipment Model under Erlang Distribution

    Eishi CHIBA  Hiroshi FUJIWARA  Yoshiyuki SEKIGUCHI  Toshihide IBARAKI  

     
    PAPER

      Vol:
    E96-D No:3
      Page(s):
    400-407

    Flat Panel Displays (FPDs) are manufactured using many pieces of different processing equipment arranged sequentially in a line. Although the constant inter-arrival time (i.e., the tact time) of glass substrates in the line should be kept as short as possible, the collision probability between glass substrates increases as tact time decreases. Since the glass substrate is expensive and fragile, collisions should be avoided. In this paper, we derive a closed form formula of the approximate collision probability for a model, in which the processing time on each piece of equipment is assumed to follow Erlang distribution. We also compare some numerical results of the closed form and computer simulation results of the collision probability.

  • Risk Assessment of a Portfolio Selection Model Based on a Fuzzy Statistical Test

    Pei-Chun LIN  Junzo WATADA  Berlin WU  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:3
      Page(s):
    579-588

    The objective of our research is to build a statistical test that can evaluate different risks of a portfolio selection model with fuzzy data. The central points and radiuses of fuzzy numbers are used to determine the portfolio selection model, and we statistically evaluate the best return by a fuzzy statistical test. Empirical studies are presented to illustrate the risk evaluation of the portfolio selection model with interval values. We conclude that the fuzzy statistical test enables us to evaluate a stable expected return and low risk investment with different choices for k, which indicates the risk level. The results of numerical examples show that our method is suitable for short-term investments.

  • A Theoretical Framework for Constructing Matching Algorithms Secure against Wolf Attack

    Manabu INUMA  Akira OTSUKA  Hideki IMAI  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E96-D No:2
      Page(s):
    357-364

    The security of biometric authentication systems against impersonation attack is usually evaluated by the false accept rate, FAR. The false accept rate FAR is a metric for zero-effort impersonation attack assuming that the attacker attempts to impersonate a user by presenting his own biometric sample to the system. However, when the attacker has some information about algorithms in the biometric authentication system, he might be able to find a “strange” sample (called a wolf) which shows high similarity to many templates and attempt to impersonate a user by presenting a wolf. Une, Otsuka, Imai [22],[23] formulated such a stronger impersonation attack (called it wolf attack), defined a new security metric (called wolf attack probability, WAP), and showed that WAP is extremely higher than FAR in a fingerprint-minutiae matching algorithm proposed by Ratha et al. [19] and in a finger-vein-patterns matching algorithm proposed by Miura et al. [15]. Previously, we constructed secure matching algorithms based on a feature-dependent threshold approach [8] and showed that if the score distribution is perfectly estimated for each input feature data, then the proposed algorithms can lower WAP to a small value almost the same as FAR. In this paper, in addition to reintroducing the results of our previous work [8], we show that the proposed matching algorithm can keep the false reject rate (FRR) low enough without degrading security, if the score distribution is normal for each feature data.

  • Outage Probability Analysis of Multiple Antenna Dual-Hop Networks with Interference-Limited Relay

    Prasanna HERATH  Upul GUNAWARDANA  Ranjith LIYANAPATHIRANA  Nandana RAJATHEVA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:2
      Page(s):
    577-584

    In this paper, we investigate the outage probability of a dual-hop, channel state information (CSI)-assisted amplify-and-forward (AF) multiple antenna relay network when interference is present at the relay. The source and the destination are equipped with multiple antennas and communicate with each other with the help of a single antenna relay. Transmit antenna selection is performed at the source for source-relay communication. Three receiver combining schemes namely, maximal ratio combining (MRC), equal gain combining (EGC) and selection combining (SC) are considered at the destination. Exact analytical expressions are derived for the outage probability of MRC and SC receiving while an approximate expression is obtained for EGC. Monte-Carlo simulation results are provided to complement analytical results and to demonstrate the effect of interference.

  • Improving Fairness without Outage Performance Deterioration in Selection Cooperation

    Qian ZHANG  Yuhan DONG  Xuedan ZHANG  Benzhou JIN  Xiaokang LIN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:2
      Page(s):
    664-667

    The traditional selection cooperation scheme selects the relay with best instantaneous receive signal-to-noise ratio to forward the message and achieves good outage performance, which may however cause poor fairness among relays. In this letter, we propose two practical selection cooperation schemes in Decode-and-Forward (DF) fashion to improve the fairness of relay selection. Numerical results suggest that both of the proposed schemes can achieve fairness close to the strict fairness scheme without outage performance deterioration. It is also validated that these schemes have lower complexities than traditional ones and therefore are practical for real networks.

  • Outage Analysis of Cognitive Spectrum Sharing for Two-Way Relaying Schemes with Opportunistic Relay Selection over i.n.i.d. Rayleigh Fading Channels

    Tran Trung DUY  Hyung Yun KONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    348-351

    In this letter, we analyze the outage performance of cognitive spectrum sharing in two-way relaying systems. We derive expressions of outage probability for the primary and secondary network over independent but not necessarily identically distributed (i.n.i.d.) Rayleigh fading channels. Monte Carlo simulations are presented to verify the theoretical analyses.

  • Cooperative Gain and Cooperative Region Aided Relay Selection for Decode-and-Forward Relaying Protocols

    Jianfei CAO  Zhangdui ZHONG  Bo AI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:1
      Page(s):
    190-200

    In this paper, we study four simple but fundamental cooperative protocols operating in the decode-and-forward (DF) fashion. Intuitively, finding an appropriate relay for such protocols may greatly improve the outage performance in practice. To this end, we investigate the issue of relay selection in this paper. Specifically, using the asymptotic outage probability, we define and derive the cooperative gain (CG) which quantitatively evaluates the superiority of cooperation over direct transmission. To simplify the process of relay selection, we derive the cooperative region (CR) where a relay is necessarily invoked to aid the communication from source to destination. With the aid of CG and CR, we propose our relay selection algorithm requiring the geographical information rather than the instantaneous channel state information (CSI), and predict the optimal relay locations. In addition, two diversity bounds are also prepared and compared. Finally, both simulations and numerical results are provided on the asymptotic outage probability, CG and CR.

  • Outage Behavior and SCK-Based Approaching Optimum Power Allocation in the Two-Way Channel

    Xuan GENG  Fang CAO  Qi-ming SHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:12
      Page(s):
    3906-3910

    In this letter, non-orthogonal amplify-and-forward (NAF) is considered in a half-duplex two-way system. We derive the closed-form outage probability in the high signal-to-noise ratio (SNR) region, and approximate it with a simpler version to enable power allocation. Then a closed-form power allocation scheme is proposed to improve the outage performance; it uses only statistical channel knowledge (SCK). It is validated that our analyses agree with simulation results and the proposed power allocation approaches the optimal power allocation.

  • Low-Complexity Concatenated Soft-In Soft-Out Detector for Spreading OFDM Systems

    Huan-Chun WANG  De-Jhen HUANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:11
      Page(s):
    3480-3491

    This paper proposes a low-complexity concatenated (LCC) soft-in soft-out (SISO) detector for spreading OFDM systems. The LCC SISO detector uses the turbo principle to compute the extrinsic information of the optimal maximum a priori probability (MAP) SISO detector with extremely low complexity. To develop the LCC SISO detector, we first partition the spreading matrix into some concatenated sparse matrices separated by interleavers. Then, we use the turbo principle to concatenate some SISO detectors, which are separated by de-interleavers or interleavers. Each SISO detector computes the soft information for each sparse matrix. By exchanging the soft information between the SISO detectors, we find the extrinsic information of the MAP SISO detector with extremely low complexity. Simulation results show that using the LCC SISO detector produces a near-optimal performance for both uncoded and coded spreading OFDM systems. In addition, by using the LCC SISO detector, the spreading OFDM system significantly improves the BER of the conventional OFDM system.

  • Quasi Fair Forwarding Strategy for Delay Tolerant Networks

    Seok-Kap KO  Hakjeon BANG  Kyungran KANG  Chang-Soo PARK  

     
    LETTER-Network

      Vol:
    E95-B No:11
      Page(s):
    3585-3589

    Existing forwarding strategies for delay tolerant networks aim at network throughput maximization. They provide forwarding opportunities to more reachable destinations. This results in the long end-to-end delay and low throughput of less reachable destinations. In this paper, we propose two forwarding strategies to improve the throughput of less reachable nodes with little throughput degradation of more reachable nodes. Evaluation results show that the proposed forwarding strategies can control the levels of fairness among the destinations while maintaining high throughput, compared with the legacy forwarding strategies.

  • Outage Analysis for Amplify-and-Forward Relay with End-to-End Antenna Selection over Non-identical Nakagami-m Environment

    Dac-Binh HA  Vo Nguyen Quoc BAO  Nguyen-Son VO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:10
      Page(s):
    3341-3344

    We derive a closed-form expression for the outage probability (OP), which is an important performance metric used to measure the probability that the target error rate performance of wireless systems exceeds a specified value, of multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying systems with best antenna selection under independent, but not necessarily identical distributed Nakagami-m fading. To gain further insights on the performance, the asymptotic approximation for OP, which reveals the diversity gain, is presented. We show that the diversity gain is solely determined by the fading severity parameters and increases with number of antennas at all nodes.

  • Voice Activity Detection Using Global Speech Absence Probability Based on Teager Energy for Speech Enhancement

    Yun-Sik PARK  Sangmin LEE  

     
    LETTER-Speech and Hearing

      Vol:
    E95-D No:10
      Page(s):
    2568-2571

    In this paper, we propose a novel voice activity detection (VAD) algorithm using global speech absence probability (GSAP) based on Teager energy (TE) for speech enhancement. The proposed method provides a better representation of GSAP, resulting in improved decision performance for speech and noise segments by the use of a TE operator which is employed to suppress the influence of noise signals. The performance of our approach is evaluated by objective tests under various environments, and it is found that the suggested method yields better results than conventional schemes.

121-140hit(432hit)