The search functionality is under construction.

Keyword Search Result

[Keyword] programming languages(3hit)

1-3hit
  • Using Hierarchical Transformation to Generate Assertion Code from OCL Constraints

    Rodion MOISEEV  Shinpei HAYASHI  Motoshi SAEKI  

     
    PAPER-Software System

      Vol:
    E94-D No:3
      Page(s):
    612-621

    Object Constraint Language (OCL) is frequently applied in software development for stipulating formal constraints on software models. Its platform-independent characteristic allows for wide usage during the design phase. However, application in platform-specific processes, such as coding, is less obvious because it requires usage of bespoke tools for that platform. In this paper we propose an approach to generate assertion code for OCL constraints for multiple platform specific languages, using a unified framework based on structural similarities of programming languages. We have succeeded in automating the process of assertion code generation for four different languages using our tool. To show effectiveness of our approach in terms of development effort, an experiment was carried out and summarised.

  • Multiple Implementations for a Set of Objects

    Masayoshi ARITSUGI  Kan YAMAMOTO  Akifumi MAKINOUCHI  

     
    PAPER-Databases

      Vol:
    E81-D No:2
      Page(s):
    183-192

    When a set of objects is shared among several applications, multiple implementations for the set are required in order to suit each application as much as possible. Furthermore, if a set of objects could have multiple implementations, the following issues arise: (1) how to select the best implementation when processing queries on the set, and (2) how to propagate updates on an implementation of the set to the others. In this paper we propose a mechanism of multiple implementations for a set, and also give a solution for the latter issue. In the proposal a set can be of multiple types, and each of the types corresponds to an implementation already contained within the set. Update propagation can be achieved by a rewriting technique at compilation time. We also present a performance study in which the feasibility and effectiveness of our proposal were examined.

  • High-Level VLSI Design Specification Validation Using Algorithmic Debugging

    Jiro NAGANUMA  Takeshi OGURA  Tamio HOSHINO  

     
    PAPER

      Vol:
    E77-A No:12
      Page(s):
    1988-1998

    This paper proposes a new environment for high-level VLSI design specification validation using "Algorithmic Debugging" and evaluates its benefits on three significant examples (a protocol processor, an 8-bit CPU, and a Prolog processor). A design is specified at a high-level using the structured analysis (SA) method, which is useful for analyzing and understanding the functionality to be realized. The specification written in SA is transformed into a logic programming language and is simulated in it. The errors (which terminate with an incorrect output in the simulation) included in the three large examples are efficiently located by answering junt a few queries from the algorithmic debugger. The number of interactions between the designer and the debugger is reduced by a factor of ten to a hundred compared to conventional simulation based validation methodologies. The correct SA specification can be automatically translated into a Register Transfer Level (RTL) specification suitable for logic synthesis. In this environment, a designer is freed from the tedious task of debugging a RTL specification, and can concentrate on the design itself. This environment promises to be an important step towards efficient high-level VLSI design specification validation.