The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] projection pursuit(3hit)

1-3hit
  • Application of Feature Engineering for Phishing Detection

    Wei ZHANG  Huan REN  Qingshan JIANG  

     
    PAPER

      Pubricized:
    2016/01/28
      Vol:
    E99-D No:4
      Page(s):
    1062-1070

    Phishing attacks target financial returns by luring Internet users to exposure their sensitive information. Phishing originates from e-mail fraud, and recently it is also spread by social networks and short message service (SMS), which makes phishing become more widespread. Phishing attacks have drawn great attention due to their high volume and causing heavy losses, and many methods have been developed to fight against them. However, most of researches suffered low detection accuracy or high false positive (FP) rate, and phishing attacks are facing the Internet users continuously. In this paper, we are concerned about feature engineering for improving the classification performance on phishing web pages detection. We propose a novel anti-phishing framework that employs feature engineering including feature selection and feature extraction. First, we perform feature selection based on genetic algorithm (GA) to divide features into critical features and non-critical features. Then, the non-critical features are projected to a new feature by implementing feature extraction based on a two-stage projection pursuit (PP) algorithm. Finally, we take the critical features and the new feature as input data to construct the detection model. Our anti-phishing framework does not simply eliminate the non-critical features, but considers utilizing their projection in the process of classification, which is different from literatures. Experimental results show that the proposed framework is effective in detecting phishing web pages.

  • Monochromatic Visualization of Multimodal Images by Projection Pursuit

    Seiji HOTTA  Kiichi URAHAMA  

     
    LETTER-Image Theory

      Vol:
    E81-A No:12
      Page(s):
    2715-2718

    A method of visualization of multimodal images by one monochromatic image is presented on the basis of the projection pursuit approach of the inverse process of the anisotropic diffusion which is a method of image restoration enhancing contrasts at edges. The extension of the projection from a linear one to nonlinear sigmoidal functions enhances the contrast further. The deterministic annealing technique is also incorporated into the optimization process for improving the contrast enhancement ability of the projection. An application of this method to a pair of MRI images of brains reveals its promising performance of superior visualization of tissues.

  • Feature Space Design for Statistical Image Recognition with Image Screening

    Koichi ARIMURA  Norihiro HAGITA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:1
      Page(s):
    88-93

    This paper proposes a design method of feature spaces in a two-stage image recognition method that improves the recognition accuracy and efficiency in statistical image recognition. The two stages are (1) image screening and (2) image recognition. Statistical image recognition methods require a lot of calculations for spatially matching between subimages and reference patterns of the specified objects to be detected in input images. Our image screening method is effective in lowering the calculation load and improving recognition accuracy. This method selects a candidate set of subimages similar to those in the object class by using a lower dimensional feature vector, while rejecting the rest. Since a set of selected subimages is recognized by using a higher dimensional feature vector, overall recognition efficiency is improved. The classifier for recognition is designed from the selected subimages and also improves recognition accuracy, since the selected subimages are less contaminated than the originals. Even when conventional recognition methods based on linear transformation algorithms, i. e. principal component analysis (PCA) and projection pursuit (PP), are applied to the recognition stage in our method, recognition accuracy and efficiency may be improved. A new criterion, called a screening criterion, for measuring overall efficiency and accuracy of image recognition is introduced to efficiently design the feature spaces of image screening and recognition. The feature space for image screening are empirically designed subject to taking the lower number of dimensions for the feature space referred to as LS and the larger value of the screening criterion. Then, the recognition feature space which number of dimensions is referred to as LR is designed under the condition LSLR. The two detection tasks were conducted in order to examine the performance of image screening. One task is to detect the eye- and-mouth-areas in a face image and the other is to detect the text-area in a document image. The experimental results demonstrate that image screening for these two tasks improves both recognition accuracy and throughput when compared to the conventional one-stage recognition method.