The search functionality is under construction.

Keyword Search Result

[Keyword] promise(10hit)

1-10hit
  • Node Density Loss Resilient Report Generation Method for the Statistical Filtering Based Sensor Networks

    Jin Myoung KIM  Hae Young LEE  

     
    LETTER-Information Network

      Pubricized:
    2020/05/29
      Vol:
    E103-D No:9
      Page(s):
    2007-2010

    In the statistic en-route filtering, each report generation node must collect a certain number of endorsements from its neighboring nodes. However, at some point, a node may fail to collect an insufficient number of endorsements since some of its neighboring nodes may have dead batteries. This letter presents a report generation method that can enhance the generation process of sensing reports under such a situation. Simulation results show the effectiveness of the proposed method.

  • Compromising Strategies for Agents in Multiple Interdependent Issues Negotiation

    Shun OKUHARA  Takayuki ITO  

     
    PAPER

      Pubricized:
    2020/01/21
      Vol:
    E103-D No:4
      Page(s):
    759-770

    This paper presents a compromising strategy based on constraint relaxation for automated negotiating agents in the nonlinear utility domain. Automated negotiating agents have been studied widely and are one of the key technologies for a future society in which multiple heterogeneous agents act collaboratively and competitively in order to help humans perform daily activities. A pressing issue is that most of the proposed negotiating agents utilize an ad-hoc compromising process, in which they basically just adjust/reduce a threshold to forcibly accept their opponents' offers. Because the threshold is just reduced and the agent just accepts the offer since the value is more than the threshold, it is very difficult to show how and what the agent conceded even after an agreement has been reached. To address this issue, we describe an explainable concession process using a constraint relaxation process. In this process, an agent changes its belief by relaxing constraints, i.e., removing constraints, so that it can accept it is the opponent's offer. We also propose three types of compromising strategies. Experimental results demonstrate that these strategies are efficient.

  • Fine-Grained Analysis of Compromised Websites with Redirection Graphs and JavaScript Traces

    Yuta TAKATA  Mitsuaki AKIYAMA  Takeshi YAGI  Takeshi YADA  Shigeki GOTO  

     
    PAPER-Internet Security

      Pubricized:
    2017/05/18
      Vol:
    E100-D No:8
      Page(s):
    1714-1728

    An incident response organization such as a CSIRT contributes to preventing the spread of malware infection by analyzing compromised websites and sending abuse reports with detected URLs to webmasters. However, these abuse reports with only URLs are not sufficient to clean up the websites. In addition, it is difficult to analyze malicious websites across different client environments because these websites change behavior depending on a client environment. To expedite compromised website clean-up, it is important to provide fine-grained information such as malicious URL relations, the precise position of compromised web content, and the target range of client environments. In this paper, we propose a new method of constructing a redirection graph with context, such as which web content redirects to malicious websites. The proposed method analyzes a website in a multi-client environment to identify which client environment is exposed to threats. We evaluated our system using crawling datasets of approximately 2,000 compromised websites. The result shows that our system successfully identified malicious URL relations and compromised web content, and the number of URLs and the amount of web content to be analyzed were sufficient for incident responders by 15.0% and 0.8%, respectively. Furthermore, it can also identify the target range of client environments in 30.4% of websites and a vulnerability that has been used in malicious websites by leveraging target information. This fine-grained analysis by our system would contribute to improving the daily work of incident responders.

  • A Deception Mechanism against Compromised Station Attacks in IEEE 802.11 Channel-Hopping Systems

    Jaemin JEUNG  Seungmyeong JEONG  JaeSung LIM  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E95-B No:10
      Page(s):
    3362-3364

    We propose a deception mechanism to combat a compromised station in IEEE 802.11 channel hopping systems. A compromised station can follow the hopping channels and continuously attack them, since it recognizes the channel-hopping sequence. The key concept of the deception mechanism is that an access point notifies a new hopping seed but not to the jammer, while a deception station deceives the jammer. Simulations show that the proposed scheme increases network throughput compared to conventional channel hopping schemes when they are under compromised station attacks.

  • Security Analysis of Two Augmented Password-Authenticated Key Exchange Protocols

    SeongHan SHIN  Kazukuni KOBARA  Hideki IMAI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E93-A No:11
      Page(s):
    2092-2095

    An augmented PAKE (Password-Authenticated Key Exchange) protocol is said to be secure against server-compromise impersonation attacks if an attacker who obtained password verification data from a server cannot impersonate a client without performing off-line dictionary attacks on the password verification data. There are two augmented PAKE protocols where the first one [12] was proposed in the IEEE Communications Letters and the second one [15] was submitted to the IEEE P1363.2 standard working group [9]. In this paper, we show that these two augmented PAKE protocols [12], [15] (claimed to be secure) are actually insecure against server-compromise impersonation attacks. More specifically, we present generic server-compromise impersonation attacks on these augmented PAKE protocols [12],[15].

  • A Resilient and Efficient Replication Attack Detection Scheme for Wireless Sensor Networks

    Chano KIM  Seungjae SHIN  Chanil PARK  Hyunsoo YOON  

     
    LETTER-Application Information Security

      Vol:
    E92-D No:7
      Page(s):
    1479-1483

    In a large-scale sensor network, replicated hostile nodes may be used for harsh inner attacks. To detect replicas, this paper presents a distributed, deterministic, and efficient approach robust to node compromise attacks without incurring significant resource overheads.

  • A Multipath En-Route Filtering Method for Dropping Reports in Sensor Networks

    Mun Su KIM  Tae Ho CHO  

     
    LETTER-Networks

      Vol:
    E90-D No:12
      Page(s):
    2108-2109

    In this paper, we propose a multipath en-route filtering method to deal with the problems caused by black hole attacks and selective forwarding attacks. Our result shows that the method is more resilient to these problems up to a certain number of compromised nodes than the statistical en-route filtering scheme.

  • Solving SAT Efficiently with Promises

    Kazuo IWAMA  Akihiro MATSUURA  

     
    PAPER-Turing Machine, Recursive Functions

      Vol:
    E86-D No:2
      Page(s):
    213-218

    In this paper, we consider two types of promises for (k-)CNF formulas which can help to find a satisfying assignment of a given formula. The first promise is the Hamming distance between truth assignments. Namely, we know in advance that a k-CNF formula with n variables, if satisfiable, has a satisfying assignment with at most pn variables set to 1. Then we ask whether or not the formula is satisfiable. It is shown that for k 3 and (i) when p=nc (-1 < c 0), the problem is NP-hard; and (ii) when p=log n/n, there exists a polynomial-time deterministic algorithm. The algorithm is based on the exponential-time algorithm recently presented by Schoning. It is also applied for coloring k-uniform hypergraphs. The other promise is the number of satisfying assignments. For a CNF formula having 2n/2nε (0 ε < 1) satisfying assignments, we present a subexponential-time deterministic algorithm based on the inclusion-exclusion formula.

  • 4-Move Perfect ZKIP for Some Promise Problems

    Kaoru KUROSAWA  Wakaha OGATA  Shigeo TSUJII  

     
    PAPER

      Vol:
    E78-A No:1
      Page(s):
    34-41

    In this paper, we consider ZKIPs for promise problems. A promise problem is a pair of predicates (Q,R). A Turning machine T solves the promise problem (Q,R) if, for every x satisfying Q(x), machine T halts and it answers "yes" iff R(x). When ¬Q (x), we do not care what T does. First, we define "promised BPP" which is a promise problem version of BPP. Then, we prove that a promise problem (Q,R) has a 3-move interactive proof system which is black-box simulation zero knowledge if and only if (Q,R) ∈ promised BPP. Next, we show a "4-move" perfect ZKIPs (black-box simulation) for a promise problem of Quadratic Residuosity and that of Blum Numbers under no cryptographic assumption.

  • Communication Complexity of Perfect ZKIP for a Promise Problem

    Kaoru KUROSAWA  Takashi SATOH  

     
    PAPER

      Vol:
    E76-A No:1
      Page(s):
    46-49

    We define the communication complexity of a perfect zero-knowledge interactive proof (ZKIP) as the expected number of bits communicated to achieve the given error probabilities (of both the completeness and the soundness). While the round complexity of ZKIPs has been studied greatly, no progress has been made for the communication complexity of those. This paper shows a perfect ZKIP whose communication complexity is 11/12 of that of the standard perfect ZKIP for a specific class of Quadratic Residuosity.