1-2hit |
Daiki MAEHARA Gia Khanh TRAN Kei SAKAGUCHI Kiyomichi ARAKI
This paper empirically validates battery-less sensor activation via wireless energy transmission to release sensors from wires and batteries. To seamlessly extend the coverage and activate sensor nodes distributed in any indoor environment, we proposed multi-point wireless energy transmission with carrier shift diversity. In this scheme, multiple transmitters are employed to compensate path-loss attenuation and orthogonal frequencies are allocated to the multiple transmitters to avoid the destructive interference that occurs when the same frequency is used by all transmitters. In our previous works, the effectiveness of the proposed scheme was validated theoretically and also empirically by using just a spectrum analyzer to measure the received power. In this paper, we develop low-energy battery-less sensor nodes whose consumed power and required received power for activation are respectively 142µW and 400µW. In addition, we conduct indoor experiments in which the received power and activation of battery-less sensor node are simultaneously observed by using the developed battery-less sensor node and a spectrum analyzer. The results show that the coverage of single-point and multi-point wireless energy transmission without carrier shift diversity are, respectively, 84.4% and 83.7%, while the coverage of the proposed scheme is 100%. It can be concluded that the effectiveness of the proposed scheme can be verified by our experiments using real battery-less sensor nodes.
Keiichi MIZUTANI Takehiro MIYAMOTO Kei SAKAGUCHI Kiyomichi ARAKI
This paper develops the first prototype hardware for a TDD two-way multi-hop relay network with MIMO network coding. Since conventional wireless multi-hop relay networks have the drawback of low data rate, TDD two-way multi-hop relay networks have been studied as a solution to realize high data rate recently. In these networks, forward and backward streams are spatially multiplexed by using interference cancellation techniques such as MIMO beamforming or MIMO network coding. In this paper, a demonstration system for the TDD two-way multi-hop relay network with MIMO network coding (called 2-way relay network hereafter) is developed using the prototype hardware. In the demonstration system, each transmitter and receiver performs network coded broadcast and MIMO multiple access, respectively. By using the demonstration system, network throughput is measured in an indoor environment to prove the realization and effectiveness of the 2-way relay network. From the results of network throughput, it is found that the 2-way relay network can achieve high network throughput approaching theoretical upper bound even in low average end-to-end SNR area where network throughput of the direct link degrades severely. From these results, the realization and effectiveness of the 2-way relay network can be proved in the real indoor environment.