The search functionality is under construction.

Keyword Search Result

[Keyword] quality prediction(6hit)

1-6hit
  • Proof of Concept of Optimum Radio Access Technology Selection Scheme with Radars for Millimeter-Wave Networks Open Access

    Mitsuru UESUGI  Yoshiaki SHINAGAWA  Kazuhiro KOSAKA  Toru OKADA  Takeo UETA  Kosuke ONO  

     
    PAPER

      Pubricized:
    2023/05/23
      Vol:
    E106-B No:9
      Page(s):
    778-785

    With the rapid increase in the amount of data communication in 5G networks, there is a strong demand to reduce the power of the entire network, so the use of highly power-efficient millimeter-wave (mm-wave) networks is being considered. However, while mm-wave communication has high power efficiency, it has strong straightness, so it is difficult to secure stable communication in an environment with blocking. Especially when considering use cases such as autonomous driving, continuous communication is required when transmitting streaming data such as moving images taken by vehicles, it is necessary to compensate the blocking problem. For this reason, the authors examined an optimum radio access technology (RAT) selection scheme which selects mm-wave communication when mm-wave can be used and select wide-area macro-communication when mm-wave may be blocked. In addition, the authors implemented the scheme on a prototype device and conducted field tests and confirmed that mm-wave communication and macro communication were switched at an appropriate timing.

  • Experiment of Integrated Technologies in Robotics, Network, and Computing for Smart Agriculture Open Access

    Ryota ISHIBASHI  Takuma TSUBAKI  Shingo OKADA  Hiroshi YAMAMOTO  Takeshi KUWAHARA  Kenichi KAWAMURA  Keisuke WAKAO  Takatsune MORIYAMA  Ricardo OSPINA  Hiroshi OKAMOTO  Noboru NOGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/11/05
      Vol:
    E105-B No:4
      Page(s):
    364-378

    To sustain and expand the agricultural economy even as its workforce shrinks, the efficiency of farm operations must be improved. One key to efficiency improvement is completely unmanned driving of farm machines, which requires stable monitoring and control of machines from remote sites, a safety system to ensure safe autonomous driving even without manual operations, and precise positioning in not only small farm fields but also wider areas. As possible solutions for those issues, we have developed technologies of wireless network quality prediction, an end-to-end overlay network, machine vision for safety and positioning, network cooperated vehicle control and autonomous tractor control and conducted experiments in actual field environments. Experimental results show that: 1) remote monitoring and control can be seamlessly continued even when connection between the tractor and the remote site needs to be switched across different wireless networks during autonomous driving; 2) the safety of the autonomous driving can automatically be ensured by detecting both the existence of people in front of the unmanned tractor and disturbance of network quality affecting remote monitoring operation; and 3) the unmanned tractor can continue precise autonomous driving even when precise positioning by satellite systems cannot be performed.

  • Experimental Validation of Link Quality Prediction Using Exact Self-Status of Mobility Robots in Wireless LAN Systems Open Access

    Riichi KUDO  Matthew COCHRANE  Kahoko TAKAHASHI  Takeru INOUE  Kohei MIZUNO  

     
    PAPER

      Pubricized:
    2020/07/01
      Vol:
    E103-B No:12
      Page(s):
    1385-1393

    Autonomous mobility machines, such as self-driving cars, transportation robots, and automated construction machines, are promising to support or enrich human lives. To further improve such machines, they will be connected to the network via wireless links to be managed, monitored, or remotely operated. The autonomous mobility machines must have self-status based on their positioning system to safely conduct their operations without colliding with other objects. The self-status is not only essential for machine operation but also it is valuable for wireless link quality management. This paper presents self-status-based wireless link quality prediction and evaluates its performance by using a prototype mobility robot combined with a wireless LAN system. The developed robot has functions to measure the throughput and receive signal strength indication and obtain self-status details such as location, direction, and odometry data. Prediction performance is evaluated in offline processing by using the dataset gathered in an indoor experiment. The experiments clarified that, in the 5.6 GHz band, link quality prediction using self-status of the robot forecasted the throughput several seconds into the future, and the prediction accuracies were investigated as dependent on time window size of the target throughput, bandwidth, and frequency gap.

  • Wiener-Based Inpainting Quality Prediction

    Takahiro OGAWA  Akira TANAKA  Miki HASEYAMA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/07/04
      Vol:
    E100-D No:10
      Page(s):
    2614-2626

    A Wiener-based inpainting quality prediction method is presented in this paper. The proposed method is the first method that can predict inpainting quality both before and after the intensities have become missing even if their inpainting methods are unknown. Thus, when the target image does not include any missing areas, the proposed method estimates the importance of intensities for all pixels, and then we can know which areas should not be removed. Interestingly, since this measure can be also derived in the same manner for its corrupted image already including missing areas, the expected difficulty in reconstruction of these missing pixels is predicted, i.e., we can know which missing areas can be successfully reconstructed. The proposed method focuses on expected errors derived from the Wiener filter, which enables least-squares reconstruction, to predict the inpainting quality. The greatest advantage of the proposed method is that the same inpainting quality prediction scheme can be used in the above two different situations, and their results have common trends. Experimental results show that the inpainting quality predicted by the proposed method can be successfully used as a universal quality measure.

  • Multimedia Quality Prediction Methodologies for Advanced Mobile and IP-Based Telephony Open Access

    Nobuhiko KITAWAKI  

     
    INVITED PAPER

      Vol:
    E89-B No:2
      Page(s):
    262-272

    This paper describes the author's perspective on multimedia quality prediction methodologies for multimedia communications in advanced mobile and internet protocol (IP)-based telephony, and reports related experiments and trials. First, the paper describes the need for perceptual QoS (Quality of Service) assessment in which various quality factors in multimedia communications for advanced mobile and IP-based telephony are analyzed. Then an objective quality prediction scheme is proposed from the viewpoints of quality measurement tools for each quality factor and an opinion model for compound quality factors in mobile and IP-based communications networks. Finally, the author's current trials of measurement tools and opinion models are described.

  • Constructing a Bayesian Belief Network to Predict Final Quality in Embedded System Development

    Sousuke AMASAKI  Yasunari TAKAGI  Osamu MIZUNO  Tohru KIKUNO  

     
    PAPER

      Vol:
    E88-D No:6
      Page(s):
    1134-1141

    Recently, software development projects have been required to produce highly reliable systems within a short period and with low cost. In such situation, software quality prediction helps to confirm that the software product satisfies required quality expectations. In this paper, by using a Bayesian Belief Network (BBN), we try to construct a prediction model based on relationships elicited from the embedded software development process. On the one hand, according to a characteristic of embedded software development, we especially propose to classify test and debug activities into two distinct activities on software and hardware. Then we call the proposed model "the BBN for an embedded software development process". On the other hand, we define "the BBN for a general software development process" to be a model which does not consider this classification of activity, but rather, merges them into a single activity. Finally, we conducted experimental evaluations by applying these two BBNs to actual project data. As the results of our experiments show, the BBN for the embedded software development process is superior to the BBN for the general development process and is applicable effectively for effective practical use.