The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] quality-estimation models(2hit)

1-2hit
  • Metadata-Based Quality-Estimation Model for Tile-Based Omnidirectional Video Streaming Open Access

    Yuichiro URATA  Masanori KOIKE  Kazuhisa YAMAGISHI  Noritsugu EGI  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2022/11/15
      Vol:
    E106-B No:5
      Page(s):
    478-488

    In this paper, a metadata-based quality-estimation model is proposed for tile-based omnidirectional video streaming services, aiming to realize quality monitoring during service provision. In the tile-based omnidirectional video (ODV) streaming services, the ODV is divided into tiles, and the high-quality tiles and the low-quality tiles are distributed in accordance with the user's viewing direction. When the user changes the viewing direction, the user temporarily watches video with the low-quality tiles. In addition, the longer the time (delay time) until the high-quality tile for the new viewing direction is downloaded, the longer the viewing time of video with the low-quality tile, and thus the delay time affects quality. From the above, the video quality of the low-quality tiles and the delay time significantly impact quality, and these factors need to be considered in the quality-estimation model. We develop quality-estimation models by extending the conventional quality-estimation models for 2D adaptive streaming. We also show that the quality-estimation model using the bitrate, resolution, and frame rate of high- and low-quality tiles and that the delay time has sufficient estimation accuracy based on the results of subjective quality evaluation experiments.

  • Transferring Adaptive Bit Rate Streaming Quality Models from H.264/HD to H.265/4K-UHD Open Access

    Pierre LEBRETON  Kazuhisa YAMAGISHI  

     
    PAPER-Network

      Pubricized:
    2019/06/25
      Vol:
    E102-B No:12
      Page(s):
    2226-2242

    In this paper the quality of adaptive bit rate video streaming is investigated and two state-of-the-art models, i.e., the NTT audiovisual quality-estimation and ITU-T P.1203 models, are considered. This paper shows how these models can be applied to new conditions, e.g., 4K ultra high definition (4K-UHD) videos encoded using H.265, considering that they were originally designed and trained for HD videos encoded with H.264. Six subjective evaluations involving up to 192 participants and a large variety of test conditions, e.g., durations from 10sec to 3min, coding-quality variation, and stalling events, were conducted on both TV and mobile devices. Using the subjective data, this paper addresses how models and coefficients can be transferred to new conditions. A comparison between state-of-the-art models is conducted, showing the performance of transferred and retrained models. It is found that other video-quality estimation models, such as VMAF, can be used as input of the NTT and ITU-T P.1203 long-term pooling modules, allowing these other video-quality-estimation models to support the specificities of adaptive bit-rate-streaming scenarios. Finally, all retrained coefficients are detailed in this paper allowing future work to directly reuse the results of this study.