The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ray tracing technique(2hit)

1-2hit
  • Path Loss Characterization in a Body-Centric Scenario at 94GHz

    Alice PELLEGRINI  Alessio BRIZZI  Lianhong ZHANG  Khaleda ALI  Yang HAO  

     
    PAPER-Antennas

      Vol:
    E96-B No:10
      Page(s):
    2448-2454

    The extensive study and design of Body Area Networks (BANs) and development of related applications have been an object of interest during the last few years. Indeed, the majority of applications have been developed to operate at frequencies up to X band. However nowadays, a new growing attention is being focused on moving the study of BANs to higher frequencies such as those in V andW bands. The characterization of the on-body propagation channel is therefore essential for the design of reliable mm-wave BAN systems. However the classical methods (FDTD, MoM, FEM) commonly used at lower frequencies are not computationally efficient at mm-wave due to the large amount of mesh elements needed to discretize an electrically large geometry such as the human body. To overcome this issue, a ray tracing technique, generally used for characterizing indoor propagation, has been used to analyze a specific channel: chest-to-belt link. The reliability of this high frequency method has been investigated in this paper considering three different test cases. Moreover, a comparison of simulations and measurements, both performed on a body centric scenario at 94GHz, is also presented as well.

  • Propagation Mechanisms of UHF Radiowave Propagation into Multistory Buildings for Microcellular Environment

    Jenn-Hwan TARNG  Yung-Chao CHANG  Chih-Ming CHEN  

     
    PAPER-Antennas and Propagation

      Vol:
    E81-B No:10
      Page(s):
    1920-1926

    Mechanism of UHF radiowave propagation into multistory office buildings are explored by using ray-tracing based models, which include a three-dimensional (3-D) ray-tracing model and a direct-transmitted ray (DTR) model. Prediction accuracy of the models is ascertained by many measured data and the measurements are carried out at many specific sites with different propagation scenarios. Their measured results also demonstrate some important propagation phenomena. It is found that (1) the direct transmitted wave may be the dominant mode; (2) the path loss neither increases nor decreases monotonically as a function of increasing floor level; and (3) there is not much difference of the average path loss among the receiving positions in the same room.