The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] rectangular waveguides(6hit)

1-6hit
  • Electromagnetic Scattering by a Cylindrical Material Piercing through the Narrow Walls of a Rectangular Waveguide: Analytical Solution and Application to Material Characterization

    Alfred KIK  Atsuhiro NISHIKATA  

     
    PAPER

      Vol:
    E99-C No:1
      Page(s):
    52-60

    We propose a new swept-frequency measurement method for the electromagnetic characterization of materials. The material is a multilayer cylinder that pierces a rectangular waveguide through two holes in the narrow waveguide walls. The complex permittivity and permeability of the material are calculated from measured S-parameters as an inverse problem. To this aim, the paper develops a complete electromagnetic formulation of the problem, where the effects of material insertion holes are taken into consideration. The formulation is validated through the measurement of ferrite and water samples in the S-band.

  • Left-Handed Waveguide Using Cutoff TM-Mode

    Mitsuyoshi KISHIHARA  Yuki MIZUTANI  Isao OHTA  Kensuke OKUBO  Hironori TAKIMOTO  

     
    PAPER

      Vol:
    E99-C No:1
      Page(s):
    61-67

    It has been reported that a left-handed waveguide can be constituted using cutoff TE10 mode of rectangular waveguide. Because the cutoff TE10 mode shows effectively negative permittivity, the left-handed mode propagates by adding series capacitance in the form of short- or open-stubs. This paper suggests a constitution method of left-handed waveguides using cutoff TM mode. In this case, the cutoff TM mode shows effectively negative permeability. Therefore, a left-handed waveguide can be constituted by adding parallel inductance. In this paper, two types of the left-handed waveguides are designed using circular TM01 mode and rectangular TM11 mode, and the dispersion characteristics are numerically investigated. The validity of the constituting principle is confirmed by an experiment.

  • Analytical Solution for the Scattering by a Cylinder Perpendicular to the Narrow Walls inside a Rectangular Waveguide and Its Application to εr and μr Measurement

    Alfred KIK  Atsuhiro NISHIKATA  

     
    PAPER

      Vol:
    E95-C No:7
      Page(s):
    1211-1221

    In this paper, a new swept-frequency method for the measurement of the complex permittivity and permeability of materials is proposed. The method is based on the S-parameters measurement of a cylindrical material placed inside a rectangular waveguide, where the axis of the cylinder is perpendicular to the narrow waveguide walls. The usage of cylinders in measurement is beneficial because they are easy to fabricate and handle. A novel exact solution of the field scattered by the cylinder is developed. The solution is based on expanding the field in a sum of orthogonal modes in cylindrical coordinates. Excitation coefficients relating the cylindrical scattered field to the waveguide modes are derived, and are used to rigorously formulates the S-parameters. Measurement are performed in the S-band with two dielectric materials (PTFE, nylon), and in the X-band with one magnetic material (ferrite epoxy). The measurement results agree with those from the literature.

  • Cruciform Directional Couplers in E-Plane Rectangular Waveguide

    Mitsuyoshi KISHIHARA  Isao OHTA  Kuniyoshi YAMANE  

     
    PAPER-Passive Devices/Circuits

      Vol:
    E90-C No:9
      Page(s):
    1743-1748

    This paper proposes a new type of compact waveguide directional coupler, which is constructed from two crossed E-plane rectangular waveguide with two metallic posts in the square junction and one metallic post at each port. The metallic posts in the square junction are set symmetrically along a diagonal line to obtain the directivity properties. The metallic post inserted at each input/output waveguide port can realize a matched state. Tight-coupling properties 0.79-6 dB are realized by optimizing the dimension of the junction and the positions/radii of the posts. The design results are verified by an em-simulator (Ansoft HFSS) and experiments.

  • A Resonant Slit-Type Probe for Millimeter-Wave Scanning Near-Field Microscopy

    Tatsuo NOZOKIDO  Tomohiro OHBAYASHI  Jongsuck BAE  Koji MIZUNO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:12
      Page(s):
    2158-2163

    A resonant slit-type probe is proposed in this paper that can improve measurement sensitivity in millimeter-wave scanning near-field microscopy. The probe consists of a rectangular metal waveguide incorporating the following three sections; a straight section at the tip of the probe whose height is much smaller than the operating wavelength; a standard-height waveguide section; a quarter-wave transformer section to achieve impedance-matching between the other sections. The design procedure used for the probe is presented in detail and the performance of the fabricated resonant probe is evaluated experimentally. Experiments performed at U-band frequencies in which we reconstruct 2D images show that the sensitivity of the resonant probe is improved by more than four times compared with a conventional tapered slit-type probe. Some experimental results are compared with those obtained using the finite element method (Ansoft HFSS). Good agreement is demonstrated.

  • Right-Angle H-Plane Waveguide Double Bend

    Jae W. LEE  Hyo J. EOM  Kazunori UCHIDA  

     
    LETTER-Antennas and Propagation

      Vol:
    E77-B No:12
      Page(s):
    1647-1649

    A simple solution for the right-angle H-plane waveguide double bend is obtained in analytic series form. The simultaneous equations are solved to obtain the transmission and reflection coefficients in fast convergent series forms. The numerical computations are performed to show the behaviors of the transmission coefficient versus frequency.