The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] robotic hand(2hit)

1-2hit
  • A Bio-Inspired Cognitive Architecture of the Motor System for Virtual Creatures

    Daniel MADRIGAL  Gustavo TORRES  Felix RAMOS  

     
    LETTER-Modeling

      Vol:
    E97-D No:8
      Page(s):
    2055-2056

    In this paper we present a cognitive architecture inspired on the biological functioning of the motor system in humans. To test the model, we built a robotic hand with a Lego Mindstorms™ kit. Then, through communication between the architecture and the robotic hand, the latter was able to perform the movement of the fingers, which therefore allowed it to perform grasping of some objects. In order to obtain these results, the architecture performed a conversion of the activation of motor neuron pools into specific degrees of servo motor movement. In this case, servo motors acted as muscles, and degrees of movement as exerted muscle force. Finally, this architecture will be integrated with high-order cognitive functions towards getting automatic motor commands generation, through planning and decision making mechanisms.

  • Robotic Hand System for Non-verbal Communication

    Kiyoshi HOSHINO  Ichiro KAWABUCHI  

     
    PAPER

      Vol:
    E87-D No:6
      Page(s):
    1347-1353

    The purpose of this study is to design a humanoid robotic hand system that is capable of conveying feelings and sensitivities by finger movement for the non-verbal communication between men and robots in the near future. In this paper, studies have been made in four steps. First, a small-sized and light-weight robotic hand was developed to be used as the humanoid according to the concept of extracting required minimum motor functions and implementing them to the robot. Second, basic characteristics of the movement were checked by experiments, simple feedforward control mechanism was designed based on velocity control, and a system capable of tracking joint time-series change command with arbitrary pattern input was realized. Third, tracking performances with regard to sinusoidal input with different frequencies were studied for evaluation of the system thus realized, and space- and time-related accuracy were investigated. Fourth, the sign language motions were generated as examples of information transmission by finger movement. A series of results thus obtained indicated that this robotic hand is capable of transmitting information promptly with comparatively high accuracy through the movement.