The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] scale estimation(5hit)

1-5hit
  • Accurate Scale Adaptive and Real-Time Visual Tracking with Correlation Filters

    Jiatian PI  Shaohua ZENG  Qing ZUO  Yan WEI  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/07/27
      Vol:
    E101-D No:11
      Page(s):
    2855-2858

    Visual tracking has been studied for several decades but continues to draw significant attention because of its critical role in many applications. This letter handles the problem of fixed template size in Kernelized Correlation Filter (KCF) tracker with no significant decrease in the speed. Extensive experiments are performed on the new OTB dataset.

  • Real-Time Object Tracking via Fusion of Global and Local Appearance Models

    Ju Hong YOON  Jungho KIM  Youngbae HWANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2017/08/07
      Vol:
    E100-D No:11
      Page(s):
    2738-2743

    In this letter, we propose a robust and fast tracking framework by combining local and global appearance models to cope with partial occlusion and pose variations. The global appearance model is represented by a correlation filter to efficiently estimate the movement of the target and the local appearance model is represented by local feature points to handle partial occlusion and scale variations. Then global and local appearance models are unified via the Bayesian inference in our tracking framework. We experimentally demonstrate the effectiveness of the proposed method in both terms of accuracy and time complexity, which takes 12ms per frame on average for benchmark datasets.

  • Feature Adaptive Correlation Tracking

    Yulong XU  Yang LI  Jiabao WANG  Zhuang MIAO  Hang LI  Yafei ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2016/11/28
      Vol:
    E100-D No:3
      Page(s):
    594-597

    Feature extractor plays an important role in visual tracking, but most state-of-the-art methods employ the same feature representation in all scenes. Taking into account the diverseness, a tracker should choose different features according to the videos. In this work, we propose a novel feature adaptive correlation tracker, which decomposes the tracking task into translation and scale estimation. According to the luminance of the target, our approach automatically selects either hierarchical convolutional features or histogram of oriented gradient features in translation for varied scenarios. Furthermore, we employ a discriminative correlation filter to handle scale variations. Extensive experiments are performed on a large-scale benchmark challenging dataset. And the results show that the proposed algorithm outperforms state-of-the-art trackers in accuracy and robustness.

  • Robust Scale Adaptive and Real-Time Visual Tracking with Correlation Filters

    Jiatian PI  Keli HU  Yuzhang GU  Lei QU  Fengrong LI  Xiaolin ZHANG  Yunlong ZHAN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2016/04/07
      Vol:
    E99-D No:7
      Page(s):
    1895-1902

    Visual tracking has been studied for several decades but continues to draw significant attention because of its critical role in many applications. Recent years have seen greater interest in the use of correlation filters in visual tracking systems, owing to their extremely compelling results in different competitions and benchmarks. However, there is still a need to improve the overall tracking capability to counter various tracking issues, including large scale variation, occlusion, and deformation. This paper presents an appealing tracker with robust scale estimation, which can handle the problem of fixed template size in Kernelized Correlation Filter (KCF) tracker with no significant decrease in the speed. We apply the discriminative correlation filter for scale estimation as an independent part after finding the optimal translation based on the KCF tracker. Compared to an exhaustive scale space search scheme, our approach provides improved performance while being computationally efficient. In order to reveal the effectiveness of our approach, we use benchmark sequences annotated with 11 attributes to evaluate how well the tracker handles different attributes. Numerous experiments demonstrate that the proposed algorithm performs favorably against several state-of-the-art algorithms. Appealing results both in accuracy and robustness are also achieved on all 51 benchmark sequences, which proves the efficiency of our tracker.

  • Online Continuous Scale Estimation of Hand Gestures

    Woosuk KIM  Hideaki KUZUOKA  Kenji SUZUKI  

     
    PAPER-Human-computer Interaction

      Vol:
    E95-D No:10
      Page(s):
    2447-2455

    The style of a gesture provides significant information for communication, and thus understanding the style is of great importance in improving gestural interfaces using hand gestures. We present a novel method to estimate temporal and spatial scale—which are considered principal elements of the style—of hand gestures. Gesture synchronization is proposed for matching progression between spatio-temporally varying gestures, and scales are estimated based on the progression matching. For comparing gestures of various sizes and speeds, gesture representation is defined by adopting turning angle representation. Also, LCSS is used as a similarity measure for reliability and robustness to noise and outliers. Performance of our algorithm is evaluated with synthesized data to show the accuracy and robustness to noise and experiments are carried out using recorded hand gestures to analyze applicability under real-world situations.