1-3hit |
Masatsugu ICHINO Hiroaki MAEDA Hiroshi YOSHIURA
A method based on score level fusion using logistic regression has been developed that uses packet header information to classify Internet applications. Applications are classified not on the basis of the individual flows for each type of application but on the basis of all the flows for each type of application, i.e., the “overall traffic flow.” The overall traffic flow is divided into equal time slots, and the applications are classified using statistical information obtained for each time slot. Evaluation using overall traffic flow generated by five types of applications showed that its true and false positive rates are better than those of methods using feature level fusion.
Takao MURAKAMI Kenta TAKAHASHI Kanta MATSUURA
Biometric identification has recently attracted attention because of its convenience: it does not require a user ID nor a smart card. However, both the identification error rate and response time increase as the number of enrollees increases. In this paper, we combine a score level fusion scheme and a metric space indexing scheme to improve the accuracy and response time in biometric identification, using only scores as information sources. We firstly propose a score level indexing and fusion framework which can be constructed from the following three schemes: (I) a pseudo-score based indexing scheme, (II) a multi-biometric search scheme, and (III) a score level fusion scheme which handles missing scores. A multi-biometric search scheme can be newly obtained by applying a pseudo-score based indexing scheme to multi-biometric identification. We secondly propose the NBS (Naive Bayes search) scheme as a multi-biometric search scheme and discuss its optimality with respect to the retrieval error rate. We evaluated our proposal using the datasets of multiple fingerprints and face scores from multiple matchers. The results showed that our proposal significantly improved the accuracy of the unimodal biometrics while reducing the average number of score computations in both the datasets.
Isao NAKANISHI Hiroyuki SAKAMOTO Yoshio ITOH Yutaka FUKUI
In on-line signature verification, complexity of signature shape can influence the value of the optimal threshold for individual signatures. Writer-dependent threshold selection has been proposed but it requires forgery data. It is not easy to collect such forgery data in practical applications. Therefore, some threshold equalization method using only genuine data is needed. In this letter, we propose three different threshold equalization methods based on the complexity of signature. Their effectiveness is confirmed in experiments using a multi-matcher DWT on-line signature verification system.