The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] selective attention(2hit)

1-2hit
  • A Salient Feature Extraction Algorithm for Speech Emotion Recognition

    Ruiyu LIANG  Huawei TAO  Guichen TANG  Qingyun WANG  Li ZHAO  

     
    LETTER-Speech and Hearing

      Pubricized:
    2015/05/29
      Vol:
    E98-D No:9
      Page(s):
    1715-1718

    A salient feature extraction algorithm is proposed to improve the recognition rate of the speech emotion. Firstly, the spectrogram of the emotional speech is calculated. Secondly, imitating the selective attention mechanism, the color, direction and brightness map of the spectrogram is computed. Each map is normalized and down-sampled to form the low resolution feature matrix. Then, each feature matrix is converted to the row vector and the principal component analysis (PCA) is used to reduce features redundancy to make the subsequent classification algorithm more practical. Finally, the speech emotion is classified with the support vector machine. Compared with the tradition features, the improved recognition rate reaches 15%.

  • Visual Attention Guided Multi-Scale Boundary Detection in Natural Images for Contour Grouping

    Jingjing ZHONG  Siwei LUO  Qi ZOU  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E92-D No:3
      Page(s):
    555-558

    Boundary detection is one of the most studied problems in computer vision. It is the foundation of contour grouping, and initially affects the performance of grouping algorithms. In this paper we propose a novel boundary detection algorithm for contour grouping, which is a selective attention guided coarse-to-fine scale pyramid model. Our algorithm evaluates each edge instead of each pixel location, which is different from others and suitable for contour grouping. Selective attention focuses on the whole saliency objects instead of local details, and gives global spatial prior for boundary existence of objects. The evolving process of edges through the coarsest scale to the finest scale reflects the importance and energy of edges. The combination of these two cues produces the most saliency boundaries. We show applications for boundary detection on natural images. We also test our approach on the Berkeley dataset and use it for contour grouping. The results obtained are pretty good.