The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] self-organizing feature map(4hit)

1-4hit
  • A SOM-CNN Algorithm for NLOS Signal Identification

    Ze Fu GAO  Hai Cheng TAO   Qin Yu ZHU  Yi Wen JIAO  Dong LI  Fei Long MAO  Chao LI  Yi Tong SI  Yu Xin WANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/08/01
      Vol:
    E106-B No:2
      Page(s):
    117-132

    Aiming at the problem of non-line of sight (NLOS) signal recognition for Ultra Wide Band (UWB) positioning, we utilize the concepts of Neural Network Clustering and Neural Network Pattern Recognition. We propose a classification algorithm based on self-organizing feature mapping (SOM) neural network batch processing, and a recognition algorithm based on convolutional neural network (CNN). By assigning different weights to learning, training and testing parts in the data set of UWB location signals with given known patterns, a strong NLOS signal recognizer is trained to minimize the recognition error rate. Finally, the proposed NLOS signal recognition algorithm is verified using data sets from real scenarios. The test results show that the proposed algorithm can solve the problem of UWB NLOS signal recognition under strong signal interference. The simulation results illustrate that the proposed algorithm is significantly more effective compared with other algorithms.

  • A Simple Learning Algorithm for Network Formation Based on Growing Self-Organizing Maps

    Hiroki SASAMURA  Toshimichi SAITO  Ryuji OHTA  

     
    LETTER-Nonlinear Problems

      Vol:
    E87-A No:10
      Page(s):
    2807-2810

    This paper presents a simple learning algorithm for network formation. The algorithm is based on self-organizing maps with growing cell structures and can adapt input data which correspond to nodes of the network. In basic numerical experiments, as a parameter is selected suitably, our algorithm can generate network having small-world-like structure. Such network structure appears in some natural networks and has advantages in practical systems.

  • Image Coding Using an Improved Feature Map Finite-State Vector Quantization

    Newaz M. S. RAHIM  Takashi YAHAGI  

     
    PAPER-Digital Signal Processing

      Vol:
    E85-A No:11
      Page(s):
    2453-2458

    Finite-state vector quantization (FSVQ) is a well-known block encoding technique for digital image compression at low bit rate application. In this paper, an improved feature map finite-state vector quantization (IFMFSVQ) algorithm using three-sided side-match prediction is proposed for image coding. The new three-sided side-match improves the prediction quality of input blocks. Precoded blocks are used to alleviate the error propagation of side-match. An edge threshold is used to classify the blocks into nonedge or edge blocks to improve bit rate performance. Furthermore, an adaptive method is also obtained. Experimental results reveal that the new IFMFSVQ reduces bit rate significantly maintaining the same subjective quality, as compared to the basic FMFSVQ method.

  • L* Learning: A Fast Self-Organizing Feature Map Learning Algorithm Based on Incremental Ordering

    Young Pyo JUN  Hyunsoo YOON  Jung Wan CHO  

     
    PAPER-Bio-Cybernetics

      Vol:
    E76-D No:6
      Page(s):
    698-706

    The self-organizing feature map is one of the most widely used neural network paradigm based on unsupervised competitive learning. However, the learning algorithm introduced by Kohonen is very slow when the size of the map is large. The slowness is caused by the search for large map in each training steps of the learning. In this paper, a fast learning algorithm based on incremental ordering is proposed. The new learning starts with only a few units evenly distributed on a large topological feature map, and gradually increases the number of units until it covers the entire map. In middle phases of the learning, some units are well-ordered and others are not, while all units are weekly-ordered in Kohonen learning. The ordered units, during the learning, help to accelerate the search speed of the algorithm and accelerate the movements of the remaining unordered units to their topological locations. It is shown by theoretical analysis as well as experimental analysis that the proposed learning algorithm reduces the training time from O(M2) to O(log M) for M by M map without any additional working space, while preserving the ordering properties of the Kohonen learning algorithm.