The search functionality is under construction.

Keyword Search Result

[Keyword] sequential estimation(3hit)

1-3hit
  • Graph Laplacian-Based Sequential Smooth Estimator for Three-Dimensional RSS Map

    Takahiro MATSUDA  Fumie ONO  Shinsuke HARA  

     
    PAPER

      Pubricized:
    2021/01/08
      Vol:
    E104-B No:7
      Page(s):
    738-748

    In wireless links between ground stations and UAVs (Unmanned Aerial Vehicles), wireless signals may be attenuated by obstructions such as buildings. A three-dimensional RSS (Received Signal Strength) map (3D-RSS map), which represents a set of RSSs at various reception points in a three-dimensional area, is a promising geographical database that can be used to design reliable ground-to-air wireless links. The construction of a 3D-RSS map requires higher computational complexity, especially for a large 3D area. In order to sequentially estimate a 3D-RSS map from partial observations of RSS values in the 3D area, we propose a graph Laplacian-based sequential smooth estimator. In the proposed estimator, the 3D area is divided into voxels, and a UAV observes the RSS values at the voxels along a predetermined path. By considering the voxels as vertices in an undirected graph, a measurement graph is dynamically constructed using vertices from which recent observations were obtained and their neighboring vertices, and the 3D-RSS map is sequentially estimated by performing graph Laplacian regularized least square estimation.

  • A Non-stationary Noise Suppression Method Based on Particle Filtering and Polyak Averaging

    Masakiyo FUJIMOTO  Satoshi NAKAMURA  

     
    PAPER-Speech Recognition

      Vol:
    E89-D No:3
      Page(s):
    922-930

    This paper addresses a speech recognition problem in non-stationary noise environments: the estimation of noise sequences. To solve this problem, we present a particle filter-based sequential noise estimation method for front-end processing of speech recognition in noise. In the proposed method, a noise sequence is estimated in three stages: a sequential importance sampling step, a residual resampling step, and finally a Markov chain Monte Carlo step with Metropolis-Hastings sampling. The estimated noise sequence is used in the MMSE-based clean speech estimation. We also introduce Polyak averaging and feedback into a state transition process for particle filtering. In the evaluation results, we observed that the proposed method improves speech recognition accuracy in the results of non-stationary noise environments a noise compensation method with stationary noise assumptions.

  • Sequential Estimation of Angles of Arrival via Signal Subspace Projection

    Yang-Ho CHOI  

     
    LETTER-Antenna and Propagation

      Vol:
    E87-B No:6
      Page(s):
    1760-1763

    Sequential estimation of arrival angles allows us to resolve closely located sources that the standard MUSIC fails to do so. A new sequential estimation method is proposed which utilizes only the signal subspace components of the steering vectors for some estimates of the arrival angles. It is theoretically shown that the asymptotic performance of the proposed method is better than that of the conventional sequential method which exploits both the signal and the noise subspace components. Simulation results show that the former outperforms the latter in correlated sources as well as in uncorrelated sources.