1-2hit |
Takuya MIYASAKA Hiroshi SATO Masaharu TAKAHASHI
MIMO technology, which uses multiple antennas, has been introduced to the mobile terminal to increase communication capacity per unit frequency. However, MIMO suffers from the problem of mutual coupling. If MIMO antennas are closely packed, as in a small wireless terminal, a strong mutual coupling occurs. The mutual coupling degrades radiation efficiency and channel capacity. As modern terminals are likely to use three MIMO antennas, reducing the mutual coupling 3×3 MIMO is essential. Some decoupling methods for three elements have been proposed. Unfortunately, these methods demand that the elements be cross-wired, which complicates fabrication and raises the cost. In this paper, we propose a non-connected decoupling method that uses short stubs and an insertion inductor and confirms that the proposed model offers excellent decoupling and increased radiation efficiency.
Takuya MIYASAKA Hiroshi SATO Masaharu TAKAHASHI
In recent years, MIMO technology which uses multiple antennas has been introduced to the mobile terminal to increase communication capacity per unit frequency. However, if MIMO antennas are put closely, a strong mutual coupling occurred. Moreover, CA which uses multiple frequencies is also utilized to improve communication speed. Therefore, reducing mutual coupling in multiple frequencies is required. In this paper, we propose a dual-band decoupling method by using a short stub and a branch element and confirmed that the proposed model performed decoupling, increased radiation efficiency.