The search functionality is under construction.

Keyword Search Result

[Keyword] sparse superposition codes(2hit)

1-2hit
  • Deep Learning of Damped AMP Decoding Networks for Sparse Superposition Codes via Annealing

    Toshihiro YOSHIDA  Keigo TAKEUCHI  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2022/07/22
      Vol:
    E106-A No:3
      Page(s):
    414-421

    This paper addresses short-length sparse superposition codes (SSCs) over the additive white Gaussian noise channel. Damped approximate message-passing (AMP) is used to decode short SSCs with zero-mean independent and identically distributed Gaussian dictionaries. To design damping factors in AMP via deep learning, this paper constructs deep-unfolded damped AMP decoding networks. An annealing method for deep learning is proposed for designing nearly optimal damping factors with high probability. In annealing, damping factors are first optimized via deep learning in the low signal-to-noise ratio (SNR) regime. Then, the obtained damping factors are set to the initial values in stochastic gradient descent, which optimizes damping factors for slightly larger SNR. Repeating this annealing process designs damping factors in the high SNR regime. Numerical simulations show that annealing mitigates fluctuation in learned damping factors and outperforms exhaustive search based on an iteration-independent damping factor.

  • Expectation Propagation Decoding for Sparse Superposition Codes Open Access

    Hiroki MAYUMI  Keigo TAKEUCHI  

     
    LETTER-Coding Theory

      Pubricized:
    2020/07/06
      Vol:
    E103-A No:12
      Page(s):
    1666-1669

    Expectation propagation (EP) decoding is proposed for sparse superposition coding in orthogonal frequency division multiplexing (OFDM) systems. When a randomized discrete Fourier transform (DFT) dictionary matrix is used, the EP decoding has the same complexity as approximate message-passing (AMP) decoding, which is a low-complexity and powerful decoding algorithm for the additive white Gaussian noise (AWGN) channel. Numerical simulations show that the EP decoding achieves comparable performance to AMP decoding for the AWGN channel. For OFDM systems, on the other hand, the EP decoding is much superior to the AMP decoding while the AMP decoding has an error-floor in high signal-to-noise ratio regime.