The search functionality is under construction.

Keyword Search Result

[Keyword] stochastic computation(2hit)

1-2hit
  • High-Accuracy and Area-Efficient Stochastic FIR Digital Filters Based on Hybrid Computation

    Shunsuke KOSHITA  Naoya ONIZAWA  Masahide ABE  Takahiro HANYU  Masayuki KAWAMATA  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/22
      Vol:
    E100-D No:8
      Page(s):
    1592-1602

    This paper presents FIR digital filters based on stochastic/binary hybrid computation with reduced hardware complexity and high computational accuracy. Recently, some attempts have been made to apply stochastic computation to realization of digital filters. Such realization methods lead to significant reduction of hardware complexity over the conventional filter realizations based on binary computation. However, the stochastic digital filters suffer from lower computational accuracy than the digital filters based on binary computation because of the random error fluctuations that are generated in stochastic bit streams, stochastic multipliers, and stochastic adders. This becomes a serious problem in the case of FIR filter realizations compared with the IIR counterparts because FIR filters usually require larger number of multiplications and additions than IIR filters. To improve the computational accuracy, this paper presents a stochastic/binary hybrid realization, where multipliers are realized using stochastic computation but adders are realized using binary computation. In addition, a coefficient-scaling technique is proposed to further improve the computational accuracy of stochastic FIR filters. Furthermore, the transposed structure is applied to the FIR filter realization, leading to reduction of hardware complexity. Evaluation results demonstrate that our method achieves at most 40dB improvement in minimum stopband attenuation compared with the conventional pure stochastic design.

  • Asynchronous Stochastic Decoding of LDPC Codes: Algorithm and Simulation Model

    Naoya ONIZAWA  Warren J. GROSS  Takahiro HANYU  Vincent C. GAUDET  

     
    PAPER-VLSI Architecture

      Vol:
    E97-D No:9
      Page(s):
    2286-2295

    Stochastic decoding provides ultra-low-complexity hardware for high-throughput parallel low-density parity-check (LDPC) decoders. Asynchronous stochastic decoding was proposed to demonstrate the possibility of low power dissipation and high throughput in stochastic decoders, but decoding might stop before convergence due to “lock-up”, causing error floors that also occur in synchronous stochastic decoding. In this paper, we introduce a wire-delay dependent (WDD) scheduling algorithm for asynchronous stochastic decoding in order to reduce the error floors. Instead of assigning the same delay to all computation nodes in the previous work, different computation delay is assigned to each computation node depending on its wire length. The variation of update timing increases switching activities to decrease the possibility of the “lock-up”, lowering the error floors. In addition, the WDD scheduling algorithm is simplified for the hardware implementation in order to eliminate time-averaging and multiplication functions used in the original WDD scheduling algorithm. BER performance using a regular (1024, 512) (3,6) LDPC code is simulated based on our timing model that has computation and wire delay estimated under ASPLA 90nm CMOS technology. It is demonstrated that the proposed asynchronous decoder achieves a 6.4-9.8× smaller latency than that of the synchronous decoder with a 0.25-0.3 dB coding gain.