The search functionality is under construction.

Keyword Search Result

[Keyword] submillimeter-wave(4hit)

1-4hit
  • Diffraction-Free Bessel Beams at mm- and Submm-Wavebands Open Access

    Wenbin DOU  Yanzhong YU  

     
    INVITED PAPER

      Vol:
    E92-C No:9
      Page(s):
    1130-1136

    Bessel beams are a family of diffraction-free beams. They have many unique properties and prospective applications. Much attention has been focused to this subject in optics. Recently, the studies of such beams at mm- and submm- wavebands have been carried out in our group. The investigation results, including their theories, generation, propagation and potential applications, are presented in this paper.

  • Waveguide-Type SIS Receiver Using All-NbN Technique

    Masanori TAKEDA  Yoshinori UZAWA  Akira KAWAKAMI  Zhen WANG  

     
    PAPER

      Vol:
    E89-C No:2
      Page(s):
    163-169

    This paper describes the first experimental results for a waveguide-type all-NbN superconductor-insulator-superconductor (SIS) heterodyne mixer on an MgO substrate designed to operate over the gap frequency of Nb. The mixer consists of an NbN/MgO/NbN junction, which has a length of one wavelength at 880 GHz as a tuning circuit, an NbN/MgO/NbN microstrip as a λ/4 impedance transformer, and an RF choke filter. The mixer chip was designed using a high-frequency-structure simulator. Its return-loss and embedding-impedance characteristics were examined using a 180-times-scaled mixer model. By optimizing the cutting and polishing processes for the MgO substrate, we were able to fabricate the mixer chip with an accuracy of less than 5 µm. We succeeded in mounting the chip on a mixer block and in estimating the receiver noise temperature. The uncorrected minimum double-sideband receiver noise temperature was 740 K at 824 GHz. A comparison of the receiver noise temperature in a quasi-optical SIS mixer fabricated on the same wafer as the waveguide mixer showed that input noise was the major contributor to receiver noise in the waveguide mixer.

  • Low-Noise Superconducting Receivers for Millimeter and Submillimeter Wavelengths

    Sheng-Cai SHI  Takashi NOGUCHI  

     
    INVITED PAPER-Analog Applications

      Vol:
    E81-C No:10
      Page(s):
    1584-1594

    Millimeter- and submillimeter-wave low-noise superconducting receivers, such as superconductor-insulator-superconductor (SIS) mixers, hot-electron bolometer (HEB) mixers, and superconducting direct detectors, are addressed in this paper. Some general topics on the development of SIS mixers, including SIS junction and integrated tuning circuitry, mixing circuitry, and mixer-performance simulation, are extensively discussed. A tuneless waveguide SIS mixer developed at Nobeyama Radio Observatory (NRO) and its performance are presented. The fundamental mechanisms of diffusion- and phonon-cooled HEB mixers and recent advances in HEB mixers are briefly reviewed. Finally, incoherent detectors with superconducting tunnel junctions are discussed. Results for a direct detecting experiment at 500 GHz are given.

  • Millimeter- and Submillimeter-Wave Phase-Locking in High-Tc Josephson Junction Arrays

    Kiejin LEE  Ienari IGUCHI  Karen Y. CONSTANTINIAN  Gennady A. OVSYANNIKOV  Jeha KIM  Kwang-Yong KANG  

     
    PAPER

      Vol:
    E80-C No:10
      Page(s):
    1275-1281

    We report the strong microwave Josephson radiation from an array of high-Tc junctions on a MgO bicrystal substrate from centimeter- to millimeter-wave ranges. The dc bias current was fed to the junction array having parallel geometry with the pair of junctions shunted by superconducting loops. The configuration of bias leads was a series of interlocking dc SQUID's geometry which guaranteed the oscillation of all junctions at the same frequency. For a five-junctions array, we observed the coherent output power of about 13 pW at receiving frequency fREC22GHz without an external magnetic flux, which was nearly five times higher than that of a single bicrystal junction. We observed the Josephson linewidth of the selfradiation in coherent state less than 1 GHz by the adjustment of the external flux. The phase differences between adjacent junctions with different IcRn products could be controlled by an external small magnetic field. Submillimeter-wave detector response of the five-junction array was also studied experimentally at frequency f478 GHz.