The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] surface plasmon(29hit)

21-29hit(29hit)

  • Guiding and Nanofocusing of Two-Dimensional Optical Beam for Nanooptical Integrated Circuits

    Junichi TAKAHARA  Fuminori KUSUNOKI  

     
    INVITED PAPER

      Vol:
    E90-C No:1
      Page(s):
    87-94

    Guiding and nanofocusing of a two-dimensional (2D) optical beam in a negative-dielectric-gap waveguide is studied theoretically. An index-guiding method along the dielectric core embedded in the negative-dielectric-gap is proposed and the confinement properties of the 2D optical beam are studied by the effective-refractive-index method and FDTD simulations. We have shown that the lateral beam width of the 2D optical beam can be shrunk to zero beyond the diffraction limit. A tapered negative-dielectric-gap waveguide using adiabatic propagation achieves nano-focusing and can be applied to nano-optical couplers. This is a gateway from conventional dielectric waveguides to nano-optical integrated circuits.

  • Numerical Analysis of Waveguide-Based Surface Plasmon Resonance Sensor with Adsorbed Layer Using Two- and Three-Dimensional Beam-Propagation Methods

    Jun SHIBAYAMA  Shota TAKAGI  Tomohide YAMAZAKI  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    PAPER-Plasmonics and Nanophotonics

      Vol:
    E90-C No:1
      Page(s):
    95-101

    A waveguide-based surface plasmon resonance (SPR) sensor with an adsorbed layer is analyzed using the beam-propagation method. For two-dimensional (2-D) models, numerical results show that the change in thickness of the adsorbed layer placed on the metal leads to a significant shift of the maximum absorption wavelength. Through eigenmode analysis, the maximum absorption wavelength is found to be consistent with the cutoff wavelength of the second-order surface plasmon mode. The designed 2-D sensor shows an absorption wavelength shift from 0.595 to 0.603 µm, when the analyte refractive index is increased from 1.330 to 1.334. After a basic investigation using the 2-D models, we next study 3-D models. When the metal with the absorbed layer is wide enough to cover the core region, the 3-D results are similar to the 2-D results. However, as the metal width is reduced, the absorption wavelength shifts toward a shorter wavelength and the sensitivity to the refractive index change degrades gradually. The degradation of the sensitivity is considerable when the metal width is narrower than the core width. As a result, the metal width of the practical SPR sensor should be slightly wider than the core width so as to maintain the sensitivity corresponding to that obtained for the 2-D model.

  • Detection of Label-Free T4-DNA Molecules Using SPR Technique

    Hiroki OKUNO  Ayami NISHIOKA  Maho HOSOGI  Fumikazu OOHIRA  Gen HASHIGUCHI  

     
    PAPER-Plasmonics and Nanophotonics

      Vol:
    E90-C No:1
      Page(s):
    110-115

    In this paper, we propose a new method for detecting label-free T4-DNA molecules quantitatively using a surface plasmon resonance (SPR) technique on a gold thin film. We used a solution that dissolved T4-DNA molecules in pure water, and examined the relationship between DNA concentration change and SPR angle change in the solution. As a result, it was confirmed that the SPR angle change increased with increasing DNA concentration change. Therefore, it was feasible to detect the DNA concentration change using the SPR technique. Furthermore, to examine and detect a single or a few DNA molecule, we tried to fabricate an SPR chip in which SPR area is narrowed so that it has the same effect as focusing the beam. To narrow the SPR area, we decreased the area of gold thin film in this chip, and, to reflect light from only the area of gold thin film, the area without a gold thin film was micromachined to increase its unevenness for the reduction of light reflection. By the above-mentioned method, we examined the possibility of detecting a label-free DNA molecule using the SPR technique.

  • Preparation and Evaluation of Aligned Naphthacene Thin Films Using Surface Plasmon Excitation

    Tohru SHIMAOKA  Hiroaki KOBAYASHI  Kazuki YAMASHITA  Yasuo OHDAIRA  Kazunari SHINBO  Keizo KATO  Futao KANEKO  

     
    LETTER-Evaluation of Organic Materials

      Vol:
    E89-C No:12
      Page(s):
    1758-1759

    Molecular aligned naphthacene thins films were fabricated using vacuum evaporation and the rubbing method. The attenuated total reflection (ATR) and emission light properties from surface plasmon (SP) excitation due to molecular luminescence were investigated for these films. The long axis of the rod-like molecule was estimated to align perpendicular to the rubbing direction. The ATR and emission light properties depended on the molecular orientation.

  • Theory of Transmission and Dissipation of Radiation near a Metallic Slab Based on Angular Spectrum Representation

    Tetsuya INOUE  Yasuo OHDAIRA  Hirokazu HORI  

     
    PAPER

      Vol:
    E88-C No:9
      Page(s):
    1836-1844

    The radiation properties of oscillating electric dipoles are studied theoretically for three and four layered systems including a single metallic slab based on angular spectrum representation of vector spherical waves. One of the remarkable results obtained is the transmission energy spectrum showing strong dependence on the thickness of a dielectric layer placed between oscillating electric dipole and metallic surface, which explains the experimental results of molecular fluorescence into surface plasmon modes. The theory based on angular spectrum representation and tunneling current provides us with a clear identification of plasmonic excitation transfer, transmission loss associated with plasmon transport in metallic layer, and energy dissipation or quenching of excitation due to surface plasmon excitation at the metallic surface in relation to the characteristic complex wave number of evanescent waves.

  • A Photoelectric Property of Merocyanine LB Film Cell Utilizing Surface Plasmon Polariton Excitation

    Kazunari SHINBO  Takaaki EBE  Futao KANEKO  Keizo KATO  Takashi WAKAMATSU  

     
    PAPER-Ultra Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1081-1087

    Short-circuit photocurrents (ISC) utilizing surface plasmon polariton (SPP) excitation were investigated for the merocyanine (MC) LB film photoelectric device. The device has a prism/MgF2/Al/MC LB film/Ag structure. In the attenuated total reflection (ATR) configuration, SPPs were resonantly excited at the interfaces between MgF2 and Al (MgF2/Al) and between Ag and air (Ag/air). The thickness and the dielectric constants of the layers were evaluated from the ATR measurements. Short-circuit photocurrents, ISCs, as a function of the incident angle of the laser beam were observed simultaneously during the ATR measurements. In the ISC curves, large and small peaks were observed, and the peak angles of the ISC almost corresponded to the dip angles of the ATR curves due to the SPP excitations. Electric fields and optical absorptions in the cell were calculated using the dielectric constants and the film thickness obtained from the ATR measurements. The calculated absorption in the MC layer as a function of the incident angle corresponded to the ISC curve. It was thought that the optical absorption in the MC layer affected directly to the profile of the ISC. Furthermore, the calculated absorption in the cell with the prism and the MgF2 layer exhibited much larger than that of the cell without them. It was estimated that the photocurrents were enhanced by the excitation of SPPs in the ATR configuration.

  • Evaluation of Arachidic Acid Langmuir-Blodgett Ultrathin Films on Silver Thin Films from Scattered Light Using Surface Plasmon Polariton Excited at the Interfaces

    Yusuke AOKI  Keizo KATO  Kazunari SHINBO  Futao KANEKO  Takashi WAKAMATSU  

     
    PAPER

      Vol:
    E81-C No:7
      Page(s):
    1098-1105

    Attenuated total reflection (ATR) properties and scattered light properties were measured for Ag thin films and arachidic acid (C20) Langmuir-Blodgett (LB) ultrathin films on the Ag thin films to obtain the information about their complex dielectric constants and surface roughness utilizing an excited surface plasmon polariton. The complex dielectric constants for the Ag thin films and the C20 LB films were obtained by fitting the calculated ATR curves to the experimental ones. The surface roughnesses of these films were estimated by the angular distribution of the scattered light assuming the Gaussian function as an autocorrelation function and a linear superposition of roughness spectra. The angular spectra strongly depended on the roughness parameters: the transverse correlation length σ and the surface corrugation depth δ. The experimental angular distributions were explained by some pairs of σ and δ. It was suggested that the surface roughness of the C20 LB films changed with the number of monolayers since the angular spectra varied with the number of the C20 LB monolayers on the Ag films. It is thought that the measurement of the scattered light is useful to evaluate surface roughnesses of LB ultrathin films.

  • Refractive Index Change of Vanadyl Phthalocyanine Thin Film in Guided Wave Geometry

    Tatsuo WADA  Yoshihiko MATSUOKA  Motoyoshi SEKIYA  Keisuke SASAKI  Hiroyuki SASABE  

     
    PAPER

      Vol:
    E77-C No:5
      Page(s):
    694-699

    The optical waveguides containing phthalocyanine as an optically active material were fabricated and transmission properties were investigated experimentally and numerically. The positive refractive index change was observed in the glass waveguide with a vanadyl phthalocyanine thin film as a top layer. The thermal influence on refractive index change was estimated by surface plasmon measurements.

  • Resonance Absorptions in a Metal Grating with a Dielectric Overcoating

    Toyonori MATSUDA  Yoichi OKUNO  

     
    LETTER-Scattering and Diffraction

      Vol:
    E76-C No:10
      Page(s):
    1505-1509

    Field distributions and energy flows of the surface waves excited in singlelayer-overcoated gratings are evaluated in order to investigate the behavior of the resonance absorption in the grating.

21-29hit(29hit)