The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tactile display(3hit)

1-3hit
  • Tactile Touch Display Using Segmented-Electrode Array with Tactile Strength Stabilization Open Access

    Hiroshi HAGA  Takuya ASAI  Shin TAKEUCHI  Harue SASAKI  Hirotsugu YAMAMOTO  Koji SHIGEMURA  

     
    INVITED PAPER-Electronic Displays

      Pubricized:
    2020/07/22
      Vol:
    E104-C No:2
      Page(s):
    64-72

    We developed an 8.4-inch electrostatic-tactile touch display using a segmented-electrode array (30×20) as both tactile pixels and touch sensors. Each pixel can be excited independently so that the electrostatic-tactile touch display allows presenting real localized tactile textures in any shape. A driving scheme in which the tactile strength is independent of the grounding state of the human body by employing two-phased actuation was also proposed and demonstrated. Furthermore, tactile crosstalk was investigated to find it was due to the voltage fluctuation in the human body and it was diminished by applying the aforementioned driving scheme.

  • Electrostatic Tactile Display Using Beat Phenomenon for Stimulus Localization Open Access

    Hiroshi HAGA  Kazuhide YOSHINAGA  Jiro YANASE  Daisuke SUGIMOTO  Kenichi TAKATORI  Hideki ASADA  

     
    INVITED PAPER

      Vol:
    E98-C No:11
      Page(s):
    1008-1014

    We present an electrostatic tactile display for stimulus localization. The 240-Hz electrostatic force was generated by the beat phenomenon in a region where excited X electrodes cross excited Y electrodes, which presents localized tactile sensation out of the entire surface. A 10.4-in. visual-tactile integrated display was successfully demonstrated.

  • Tiny Feel: A New Miniature Tactile Module Using Elastic and Electromagnetic Force for Mobile Devices

    Tae-Heon YANG  Sang-Youn KIM  Wayne J. BOOK  Dong-Soo KWON  

     
    PAPER-Human-computer Interaction

      Vol:
    E93-D No:8
      Page(s):
    2233-2242

    For tactile feedback in mobile devices, the size and the power consumption of tactile modules are the dominant factors. Thus, vibration motors have been widely used in mobile devices to provide tactile sensation. However, the vibration motor cannot sufficiently generate a great amount of tactile sensation because the magnitude and the frequency of the vibration motor are coupled. For the generation of a wide variety of tactile sensations, this paper presents a new tactile actuator that incorporates a solenoid, a permanent magnet and an elastic spring. The feedback force in this actuator is generated by elastic and electromagnetic force. This paper also proposes a tiny tactile module with the proposed actuators. To construct a tiny tactile module, the contactor gap of the module is minimized without decreasing the contactor stroke, the output force, and the working frequency. The elastic springs of the actuators are separated into several layers to minimize the contactor gap without decreasing the performance of the tactile module. Experiments were conducted to investigate each contactor output force as well as the frequency response of the proposed tactile module. Each contactor of the tactile module can generate enough output force to stimulate human mechanoreceptors. As the contactors are actuated in a wide range of frequency, the proposed tactile module can generate various tactile sensations. Moreover, the size of the proposed tactile module is small enough to be embedded it into a mobile device, and its power consumption is low. Therefore, the proposed tactile actuator and module have good potential in many interactive mobile devices.