The search functionality is under construction.

Keyword Search Result

[Keyword] tensor decomposition(3hit)

1-3hit
  • Recurrent Neural Network Compression Based on Low-Rank Tensor Representation

    Andros TJANDRA  Sakriani SAKTI  Satoshi NAKAMURA  

     
    PAPER-Music Information Processing

      Pubricized:
    2019/10/17
      Vol:
    E103-D No:2
      Page(s):
    435-449

    Recurrent Neural Network (RNN) has achieved many state-of-the-art performances on various complex tasks related to the temporal and sequential data. But most of these RNNs require much computational power and a huge number of parameters for both training and inference stage. Several tensor decomposition methods are included such as CANDECOMP/PARAFAC (CP), Tucker decomposition and Tensor Train (TT) to re-parameterize the Gated Recurrent Unit (GRU) RNN. First, we evaluate all tensor-based RNNs performance on sequence modeling tasks with a various number of parameters. Based on our experiment results, TT-GRU achieved the best results in a various number of parameters compared to other decomposition methods. Later, we evaluate our proposed TT-GRU with speech recognition task. We compressed the bidirectional GRU layers inside DeepSpeech2 architecture. Based on our experiment result, our proposed TT-format GRU are able to preserve the performance while reducing the number of GRU parameters significantly compared to the uncompressed GRU.

  • Retweeting Prediction Based on Social Hotspots and Dynamic Tensor Decomposition

    Qian LI  Xiaojuan LI  Bin WU  Yunpeng XIAO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/01/30
      Vol:
    E101-D No:5
      Page(s):
    1380-1392

    In social networks, predicting user behavior under social hotspots can aid in understanding the development trend of a topic. In this paper, we propose a retweeting prediction method for social hotspots based on tensor decomposition, using user information, relationship and behavioral data. The method can be used to predict the behavior of users and analyze the evolvement of topics. Firstly, we propose a tensor-based mechanism for mining user interaction, and then we propose that the tensor be used to solve the problem of inaccuracy that arises when interactively calculating intensity for sparse user interaction data. At the same time, we can analyze the influence of the following relationship on the interaction between users based on characteristics of the tensor in data space conversion and projection. Secondly, time decay function is introduced for the tensor to quantify further the evolution of user behavior in current social hotspots. That function can be fit to the behavior of a user dynamically, and can also solve the problem of interaction between users with time decay. Finally, we invoke time slices and discretization of the topic life cycle and construct a user retweeting prediction model based on logistic regression. In this way, we can both explore the temporal characteristics of user behavior in social hotspots and also solve the problem of uneven interaction behavior between users. Experiments show that the proposed method can improve the accuracy of user behavior prediction effectively and aid in understanding the development trend of a topic.

  • A Noise Inference Method Based on Fast Context-Aware Tensor Decomposition

    Qingfu FAN  Lei ZHANG  Wen LI  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2017/03/08
      Vol:
    E100-D No:6
      Page(s):
    1360-1363

    Existing noise inference algorithms neglected the smooth characteristics of noise data, which results in executing slowly of noise inference. In order to address this problem, we present a noise inference algorithm based on fast context-aware tensor decomposition (F-CATD). F-CATD improves the noise inference algorithm based on context-aware tensor decomposition algorithm. It combines the smoothness constraint with context-aware tensor decomposition to speed up the process of decomposition. Experiments with New York City 311 noise data show that the proposed method accelerates the noise inference. Compared with the existing method, F-CATD reduces 4-5 times in terms of time consumption while keeping the effectiveness of the results.