1-1hit |
Hengyong XIANG Li ZHOU Xiaohui BA Jie CHEN
The traditional RANSAC samples uniformly in the dataset which is not efficient in the task with rich prior information. This letter proposes GUISAC (Guided Sample Consensus), which samples with the guidance of various prior information. In image matching, GUISAC extracts seed points sets evenly on images based on various prior factors at first, then it incorporates seed points sets into the sampling subset with a growth function, and a new termination criterion is used to decide whether the current best hypothesis is good enough. Finally, experimental results show that the new method GUISAC has a great advantage in time-consuming than other similar RANSAC methods, and without loss of accuracy.