The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] thermal stability(4hit)

1-4hit
  • Electrical Properties of SiN/HfO2/SiON Gate Stacks with High Thermal Stability

    Yusuke MORISAKI  Takayuki AOYAMA  Yoshihiro SUGITA  Kiyoshi IRINO  Toshihiro SUGII  Tomoji NAKAMURA  

     
    PAPER

      Vol:
    E87-C No:1
      Page(s):
    37-43

    The characteristics of HfO2 gate stacks, which consisted of the SiN layer deposited between the HfO2 and poly-Si gate electrode and the SiON interfacial layer were investigated. The SiN layer played important role to reduce the leakage current caused by the defect of the crystallized HfO2. The SiN layer was also effective to achieve the prevention of the interfacial reaction, the suppression of dopant penetration. Furthermore, that stack structure indicated excellent TDDB reliability fabricated by conventional high temperature processes.

  • Recording Capability and Thermal Stability for Particulate Media with Inter-Particle Interaction

    Toshiyuki SUZUKI  Terumitsu TANAKA  

     
    PAPER

      Vol:
    E84-C No:9
      Page(s):
    1147-1153

    Particulate media composed of very small particles were studied to determine high-density recording performance and thermal stability. Studied media included metal particulate media with mean particle length of 71, 102 and 148 nm, and Ba ferrite particulate media with mean diameter of 22, 28 and 50 nm. Using a loss-term simulation program, taking into account gap-loss, spacing-loss and particle length loss, the recording capability (D20 of 265 kFRPI for MP and 290 kFRPI for Ba ferrite media) was estimated. Thermal stability was evaluated from magnetization time decay measurements. It was found that MP media with large Ku values and 71 nm particles were satisfactorily stable, and the particle volume is still large enough in respect of thermal stability. However, 22-nm Ba ferrite media were less stable, primarily because of small Ku values and particle volume. It was also clarified that positive inter-particle interaction accelerates magnetization time decay, in the presence of a large reverse field.

  • Thermal Stability Study for Anisotropic and Isotropic Hard Disk Media

    Lea Peng TAN  Jian Ping WANG  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2171-2175

    Thermal stability of anisotropic and isotropic Co alloy thin-film media is investigated. The orientation ratio of CoCrTa(Pt)/Cr media was controlled by the mechanical texture of the NiP/Al substrates. Bulk magnetic properties, delta M curves and time decay of magnetization in the circumferential and radial directions were measured. The maximum magnetic viscosity coefficient calculated from the time decay of magnetization in the circumferential direction was higher than that in the radial direction for a mechanically textured sample, while it was similar in both directions for a non-textured sample. The magnetic viscosity coefficient in the circumferential direction is smaller than that in the radial direction when the reverse field is in the range of the demagnetization field for thin-film recording media. This implies that an anisotropic sample (namely, a sample with a high orientation ratio) will be more thermally stable when it is not exposed to a large external magnetic field.

  • Environmental Temperature Effect on Magnetization Stability in Particulate Recording Media

    Toshiyuki SUZUKI  Tomohiro MITSUGI  

     
    PAPER

      Vol:
    E80-C No:9
      Page(s):
    1168-1173

    This paper reports the thermal stability of particulate media, which include Co-Fe oxide, CrO2, and thick and thin MP tapes. By measuring the time decay of magnetization at room temperature, fluctuation fields were obtained as a function of reverse applied field. It was clarified that the fluctuation field has a constant and minimum value when the reverse applied field is equal to coercivity. Minimum fluctuation fields for the four particulate tapes were measured at several environmental temperatures ranging from -75 to +100. It was also clarified that the fluctuation field normalized by remanence coercivity increases as the environmental temperature increases for all tapes, indicating that it is a good measure of thermal stability. Activation volumes were also deduced as a function of temperature.