The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] time Petri nets(3hit)

1-3hit
  • Partial Order Reduction for Timed Circuit Verification Based on Level Oriented Model

    Tomoya KITAI  Yusuke OGURO  Tomohiro YONEDA  Eric MERCER  Chris MYERS  

     
    PAPER-Verification and Dependability Analysis

      Vol:
    E86-D No:12
      Page(s):
    2601-2611

    Using a level oriented model for verification of asynchronous circuits helps users to easily construct formal models with high readability or to naturally model data-path circuits. On the other hand, in order to use such a model for larger circuit, some technique to avoid the state explosion problem is essential. This paper first defines a level oriented formal model based on time Petri nets, and then proposes a partial order reduction algorithm that prunes unnecessary state generation while guaranteeing the correctness of the verification.

  • Framework of Timed Trace Theoretic Verification Revisited

    Bin ZHOU  Tomohiro YONEDA  Chris MYERS  

     
    PAPER-Verification

      Vol:
    E85-D No:10
      Page(s):
    1595-1604

    This paper develops a framework to support trace theoretic verification of timed circuits and systems. A theoretical foundation for classifying timed traces as either successes or failures is developed. The concept of the semimirror is introduced to allow conformance checking thus supporting hierarchical verification of timed circuits and systems. Finally, we relate our framework to those previously proposed for timing verification.

  • CTL Model Checking of Time Petri Nets Using Geometric Regions

    Tomohiro YONEDA  Hikaru RYUBA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E81-D No:3
      Page(s):
    297-306

    Geometric region method is one of the techniques to handle real-time systems which have potentially infinite state spaces. However, the original geometric region method gives incorrect results for the CTL model checking of time Petri nets. In this paper, we discuss the sufficient condition for the geometric region graphs to be correct with respect to the CTL model checking of time Petri nets, and then propose a technique to partition given geometric regions so that the graphs satisfy the sufficient condition. Finally, we implement the proposed algorithm, and compare it with the other methods by using small examples.